|
|
Microstructure and Tensile Deformation Behavior of Welded Joints of P91 Steel for Steam Pipeline in Long-term Service |
ZHAO Hai1, XIONG Shiqi2( ), LIU Enze2, TIAN Chengchuan1, LI Xiaohui1, WANG Weilin1 |
1.Huadian Electric Power Research Institute Co., Ltd., Hangzhou 310030, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
ZHAO Hai, XIONG Shiqi, LIU Enze, TIAN Chengchuan, LI Xiaohui, WANG Weilin. Microstructure and Tensile Deformation Behavior of Welded Joints of P91 Steel for Steam Pipeline in Long-term Service. Chinese Journal of Materials Research, 2023, 37(11): 837-845.
|
Abstract The microstructure and tensile deformation behavior of different zones (base metal, heat affected zone and weld zone) of joints of P91 steel pipe before after 136000 hours of service as steam pipeline were comparatively studied by means of hardness tester, tensile tests at 25 and 545℃, metalloscopy, SEM and TEM+EDS etc. The results show that the hardness test results can reflect the degradation behavior of tensile properties and the aging process of P91 steel joints. Compared with non-service steel pipes, the martensite decomposition and carbide coarsening behavior in each zone of welded joints of long-term serviced steel pipes obviously weaken the effect of martensite strengthening, precipitation strengthening and solution strengthening, and finally lead to the degradation of hardness, tensile properties at room temperature and high temperature in each zone. Among others, the hardness of weld zone and the relevant room temperature- and high temperature-tensile properties are most significantly degraded due to long-term service. The synergistic effect of the thermal cycling induced severe tempering during welding process with the long-term high temperature service may be an important cause for the significant degradation of the mechanical properties of P91 steel pipe welds.
|
Received: 04 November 2022
|
|
Fund: National Natural Science Foundation of China(51871043);Key Projects of Huadian Electric Power Research Institute(CHDKJ20-01-92) |
Corresponding Authors:
LIU Enze, Tel: (024)23971143, E-mail: nzliu@imr.ac.cn
|
1 |
Liu C S, Cui S G. Weldability and welding technology of P91 steel [J]. Weld. Technol., 2022, 51(1): 60
|
|
刘持森, 崔树国. P91钢的焊接性及其焊接工艺 [J]. 焊接技术, 2022, 51(1): 60
|
2 |
Pandey C, Giri A, Mahapatra M M. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties [J]. Mater. Sci. Eng. A, 2016, 664: 58
doi: 10.1016/j.msea.2016.03.132
|
3 |
Li B. Analysis of creep behavior of P91 steel at high temperature based on deformation mechanism [D]. Xian: Northwest University, 2021
|
|
李 博. 基于变形机制的P91钢高温蠕变行为分析 [D]. 西安: 西北大学, 2021
|
4 |
Pandey C, Mahapatra M M, Kumar P, et al. Homogenization of P91 weldments using varying normalizing and tempering treatment [J]. Mater. Sci. Eng. A, 2017, 710: 86
doi: 10.1016/j.msea.2017.10.086
|
5 |
Wang K Z, Hao Z Y, Hu F Z, et al. Optimization on heat-treatment process of P91 steel for high pressure bolier tubes [J]. China Metall., 2018, 28(5): 58
|
|
汪开忠, 郝震宇, 胡芳忠 等. 高压锅炉管用P91钢热处理工艺优化 [J]. 中国冶金, 2018, 28(5): 58
|
6 |
Li B, Liu X B, Zhu L, et al. Deformation-mechanism-based modeling of creep behavior of P91 steel [J]. J. Mech. Strength, 2022, 44(1): 198
|
|
李 博, 刘新宝, 朱 麟 等. 基于变形机制的P91钢蠕变行为分析 [J]. 机械强度, 2022, 44(1): 198
|
7 |
Yang X. Microstructure aging, property degardation and residual creep life evaluation of high-chromium martensitic heat-resistant steel [D]. Qinghuangdao: Yanshan University, 2019
|
|
杨 旭. 高铬马氏体耐热钢组织老化、性能退化及剩余寿命评估 [D]. 秦皇岛: 燕山大学, 2019
|
8 |
Sun X. Effect of martensite weld microstructure on welding cold crack sensitivity of T91/P91 steel [J]. Welded Pipe and Tube, 2021, 44(11): 7
|
|
孙 咸. 马氏体焊缝组织对T91/P91钢焊接冷裂纹敏感性的影响 [J]. 焊管, 2021, 44(11): 7
|
9 |
Xia Z X, Wang C Y, Zhao Y F, et al. Laves phase formation and its effect on mechanical properties in P91 steel [J]. Acta Metall. Sin., 2015, 28(10): 1238
doi: 10.1007/s40195-015-0318-5
|
10 |
Zhang Z W, Li X M, Du B S, et al. Microstructure evolution of P92 steel weld metal after servicing at high temperature for 50000 h [J]. Hot Work. Technol., 2017, 46(19): 208
|
|
张忠文, 李新梅, 杜宝帅 等. 高温服役50000 h后P92钢焊缝金属组织变化 [J]. 热加工工艺, 2017, 46(19): 208
|
11 |
Zhang W N. 600 MW subcritical unit T91 steel welded joints failure analysis [J]. Sci. Technol. & Innovation, 2015, (2): 74
|
|
张伟妮. 600 MW亚临界机组T91钢焊接接头失效分析 [J]. 科技与创新, 2015, (2): 74
|
12 |
Zhou L, Jiang X J, Shang J L, et al. Microstructure and properties of welded joint of new martensitic heat resistant steel after long service [J]. Weld. Technol., 2022, 51(3): 46
|
|
周 龙, 蒋欣军, 尚建路 等. 长期服役后新型马氏体耐热钢焊接接头的组织及性能 [J]. 焊接技术, 2022, 51(3): 46
|
13 |
Lv Y H. Exploration on application of hardness testing technology in power station boiler inspection [J]. Bolier Manuf., 2019, (1): 62
|
|
吕永红. 电站锅炉检验中硬度检测技术的应用探究 [J]. 锅炉制造, 2019, (1): 62
|
14 |
Zhang Q L, Jin X F, Zhai M J, et al. Conversion relationship between the leeb hardness and brinell hardness of P22 steel [J]. Phys. Test. Chem. Anal., 2021, 57(10): 18
|
|
张启礼, 金学峰, 翟孟杰 等. P22钢的里氏硬度与布氏硬度的转换关系 [J]. 理化检验-物理分册, 2021, 57(10): 18
doi: 10.11973/lhjy-wl202110004
|
15 |
Wang J H, Wang Y S, Liu F G, et al. Study on non-uniform softening and formation mechanism of P91 steel for high temperature steam pipeline during service [J]. Foundry Technol., 2021, 42(6):517
|
|
王金海, 王艳松, 刘福广 等. 高温蒸汽管道用P91钢服役过程不均匀软化及形成机制研究 [J]. 铸造技术, 2021, 42(6): 517
|
16 |
Pandey C. The characterization of soft fine-grained heat-affected zones in P91 weldments under creep exposure conditions [J]. Steel Res. Inter., 2020, 91(1): 1900342
doi: 10.1002/srin.v91.1
|
17 |
Fan D L, Wang Z W, Ju G Y. Microstructure and properties of P91 steel pipeline in abnormal low hardness parts [J]. Heat Treat. Met., 2020, 45(3): 1
|
|
范德良, 王志武, 句光宇. P91钢管道异常低硬度部位的组织和性能 [J]. 金属热处理, 2020, 45(3): 1
doi: 10.13251/j.issn.0254-6051.2020.03.001
|
18 |
Wu S Q, Han T, Jiang S K, et al. Strenfth degradation behavior of P91 steel for a supercritical unit [J]. Mater. Mech. Eng., 2021, 45(1):28
|
|
吴术全, 韩 涛, 姜世凯 等. 某超临界机组用P91钢的强度退化行为 [J]. 机械工程材料, 2021, 45(1): 28
doi: 10.11973/jxgccl202101005
|
19 |
Peng Y, Peng X N, Zhang X M, et al. Microstructure and mechanical properties of GMAW weld metal of 890 MPa class steel [J]. J. Iron & Steel Res. Inter., 2014, 21(5): 539
|
20 |
Xu L Q, Zhang D T, Liu Y C, et al. Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel [J]. Inter. J. Miner. Metall. & Mater., 2014, 21(5): 438
|
21 |
Wang Y, He W J, Zeng Q F, et al. Effects of multiple post weld heat treatments on microstructure and precipitate of fine-grained heat affected zone of P91 weld [J]. Steel Res. Inter., 2019, 90(7): 1800607
doi: 10.1002/srin.v90.7
|
22 |
Hua Y, Chen J G, Yu L M, et al. Microstructure evolution and mechanical properties of dissimilar material diffusion-bonded joint for high Cr ferrite heat-resistant steel and austenitic heat-resistant steel [J]. Acta. Metall. Sin., 2022, 58(2): 141
doi: 10.11900/0412.1961.2020.00446
|
|
化 雨, 陈建国, 余黎明 等. 高Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能 [J]. 金属学报, 2022, 58(2): 141
|
23 |
Peng Z F, Liu S, Yang C, et al. The effect of phase parameter variation on hardness of P91 components after service exposures at 530-550℃ [J]. Acta Mater., 2017, 143: 141
doi: 10.1016/j.actamat.2017.10.010
|
24 |
Deng H. Microstructure, properties and safety evaluation of low hardness P91 steel tube after long service [J]. Heat Treat. Met., 2021, 46(12): 209
doi: 10.13251/j.issn.0254-6051.2021.12.034
|
|
邓 辉. 低硬度P91钢管长时服役后的组织性能和安全性评价 [J]. 金属热处理, 2021, 46(12): 209
|
25 |
Junek M, Svobodova M, Horvath J, et al. The Effect of long-term ageing on microstructural properties and Laves phase precipitation of welded P91 and P92 steels [J]. Steel Res. Inter., 2022, 93(2): 2100311
doi: 10.1002/srin.v93.2
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|