Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (10): 759-769    DOI: 10.11901/1005.3093.2022.633
ARTICLES Current Issue | Archive | Adv Search |
High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating
WANG Xingping1,2(), XUE Wenbin2, WANG Wenxuan3
1.School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2.Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
3.School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Cite this article: 

WANG Xingping, XUE Wenbin, WANG Wenxuan. High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating. Chinese Journal of Materials Research, 2023, 37(10): 759-769.

Download:  HTML  PDF(15803KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A ZrO2/Cr composite coating on Zr-2 alloy was prepared by micro-arc oxidation (MAO) and filtered cathodic vacuum arc deposition (FCVAD) treatments. The oxidation resistance of bare and ZrO2/Cr-coated Zr alloys was estimated in 900~1100°C steam environment using a thermogravimetric analyzer (TGA) and their cross-sectional structures, phase constituents and composition depth profiles before and after steam oxidation were analyzed. The results showed that the mass gain per unit area of ZrO2/Cr-coated Zr alloy was about 3/8, 1/4 and 2/5 of that of bare Zr alloy after 3600 s steam oxidation at 900, 1000 and 1100℃, respectively. In high temperature water vapor, the dense Cr2O3 film formed on the surface of ZrO2/Cr-coated one suppressed the inward oxygen diffusion, which improved the steam oxidation resistance of Zr-2 alloy and inhibited the occurrence of breakaway oxidation at 1000°C. Before the Cr layer of ZrO2/Cr composite coating was completely oxidized into Cr2O3, the oxidation of Cr layer was principally controlled by the outward chromium diffusion rather than inward oxygen diffusion. The MAO interlayer restrained hydrogen permeation into Zr alloy substrate during the steam oxidation.

Key words:  metallic materials      Zr-2 alloy      ZrO2/Cr composite coating      high-temperature steam oxidation      oxidation kinetics      breakaway     
Received:  28 November 2022     
ZTFLH:  TG174.442  
Fund: Beijing Natural Science Foundation(2172029);National Natural Science Foundation of China(51671032);Science and Technology Program of Gansu Province(20JR10RA269);Innovation Fund Project of Gansu Education Department(2021B-099);Young Scholars Science Foundation of Lanzhou Jiaotong University(2023002)
Corresponding Authors:  WANG Xingping, Tel: 18298491716, E-mail: wangxplju@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.633     OR     https://www.cjmr.org/EN/Y2023/V37/I10/759

Fig.1  Morphology, microstructure and phase compon-ent of MAO-coated Zr-2 alloy (a) surface morp-hology, (b) cross-sectional microstructure, (c) XRD pattern
Fig.2  Microstructure, compositions and phase compon-ent of ZrO2/Cr composite coating on Zr-2 alloy.
(a) cross-sectional microstructure, (b) GDOES composition depth profiles, (c) XRD pattern. The inserted figure in Fig.2b is the magnified composition depth profiles of Na, H and C elements
Fig.3  Oxidation kinetics curves of bare and ZrO2/Cr-coated Zr-2 alloy in steam environment at different temperatures (a) 900℃, (b) 1000℃, (c) 1100℃
Temperature/Bare Zr-2ZrO2/Cr-coated Zr-2
KnnKnnKnnKnn
9002.67×10-23--8.60×10-42--
10003.18×10-223.74×10–319.49×10-41--
11002.01×10-12--2.88×10-31--
Table 1  Oxidation kinetics parameters of bare and ZrO2/Cr-coated Zr-2 alloy in steam environment at different temperatures
Fig.4  Cross-sectional microstructures and GDOES composition depth profiles of bare Zr-2 alloy after 3600 s steam oxida-tion at different temperatures (a) 900℃, (b) 1000℃, (c, d) 1100℃
Fig.5  Cross-sectional microstructures and GDOES composition depth profiles of ZrO2/Cr-coated Zr-2 alloy after 3600 s steam oxidation at different temperatures (a, b) 900℃, (c, d) 1000℃, (e, f) 1100℃
ElementPoint 1Point 2Point 3Point 4Point 5
Zr70.9935.9737.8115.142.38
Sn0.630.350.540.190.10
Cr0.150.287.2253.5821.82
O28.2463.4054.4331.0975.70
Table 2  EDS element analysis on the cross-section of ZrO2/Cr-coated Zr-2 alloy after 3600 s steam oxidation at 1100℃ (%,atomic fraction)
Fig.6  OM cross-sectional images of bare and ZrO2/Cr-coated Zr-2 alloy after 3600 s steam oxidation at different tempera-tures (a, c, e) bare Zr-2 alloy, (b, d, f) ZrO2/Cr composite coating
Fig.7  XRD patterns of bare and ZrO2/Cr-coated Zr-2 alloy after 3600 s steam oxidation at different temperatures (a) bare Zr-2 alloy, (b) ZrO2/Cr composite coating
Fig.8  Dependence of diffusion coefficients on the temperature
1 Terrani K A. Accident tolerant fuel cladding development: promise, status, and challenges [J]. J. Nucl. Mater., 2018, 501: 13
doi: 10.1016/j.jnucmat.2017.12.043
2 Yang J Q, Steinbrück M, Tang C C, et al. Review on chromium coated zirconium alloy accident tolerant fuel cladding [J]. J. Alloys Compd., 2022, 895: 162450
doi: 10.1016/j.jallcom.2021.162450
3 Han X C, Chen C, Tan Y Q, et al. A systematic study of the oxidation behavior of Cr coatings on Zry4 substrates in high temperature steam environment [J]. Corros. Sci., 2020, 174: 108826
doi: 10.1016/j.corsci.2020.108826
4 Park J H, Kim H G, Park J Y, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings [J]. Surf. Coat. Technol., 2015, 280: 256
doi: 10.1016/j.surfcoat.2015.09.022
5 Zeng S, Li P C, Tian J H, et al. Influence of Al content on the oxidation behavior of CrAl coating on Zry-4 alloys in 1200℃ steam [J]. Corros. Sci., 2022, 198: 110115
doi: 10.1016/j.corsci.2022.110115
6 He L X, Liu C H, Lin J H, et al. Microstructure, oxidation and corrosion properties of FeCrAl coatings with low Al content prepared by magnetron sputtering for accident tolerant fuel cladding [J]. J. Nucl. Mater., 2021, 551: 152966
doi: 10.1016/j.jnucmat.2021.152966
7 Tang C C, Steinbrueck M, Stueber M, et al. Deposition, characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4 [J]. Corros. Sci., 2018, 135: 87
doi: 10.1016/j.corsci.2018.02.035
8 Alat E, Motta A T, Comstock R J, et al. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding [J]. J. Nucl. Mater., 2016, 478: 236
doi: 10.1016/j.jnucmat.2016.05.021
9 Brachet J C, Idarraga-trujillo I, Flem M L, et al. Early studies on Cr-coated zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors [J]. J. Nucl. Mater., 2019, 517: 268
doi: 10.1016/j.jnucmat.2019.02.018
10 Shan W Y, Wang Y L, Li J, et al. High temperature oxidation resistance of Cr based coating on zirconium alloy [J]. Chin. J. Mater. Res., 2022, 36(9): 699
doi: 10.11901/1005.3093.2021.200
单位摇, 王永利, 李 静 等. 锆合金表面Cr基涂层的耐高温氧化性能 [J]. 材料研究学报, 2022, 36(9): 699
doi: 10.11901/1005.3093.2021.200
11 McCafferty E. Standard electrode potentials of the elements as a fundamental periodic property of atomic number [J]. Electrochim. Acta, 2007, 52: 5884
doi: 10.1016/j.electacta.2007.03.022
12 Jin D L, Ni N, Guo Y, et al. Corrosion of the bonding at FeCrAl/Zr alloy interfaces in steam [J]. J. Nucl. Mater., 2018, 508: 411
doi: 10.1016/j.jnucmat.2018.05.071
13 Wang J H, Yao M Y, Zhou B X, et al. Hydrogen absorption behavior of zircaloy corroded in super-heated steam [J]. Rare Met. Mater. Eng., 2011, 40(5): 833
王锦红, 姚美意, 周邦新 等. Zr-Sn系合金在过热蒸气中的腐蚀吸氢行为 [J]. 稀有金属材料与工程, 2011, 40(5): 833
14 Yang J X, Wang X, Wen Q, et al. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr-1Nb alloy [J]. J. Nucl. Mater., 2015, 467: 186
doi: 10.1016/j.jnucmat.2015.09.033
15 Lai P, Zhang H, Zhang L F, et al. Effect of micro-arc oxidation on fretting wear behavior of zirconium alloy exposed to high temperature water [J]. Wear, 2019, 424-425: 53
doi: 10.1016/j.wear.2019.02.001
16 Zou Z F, Xue W B, Jia X N, et al. Effect of voltage on properties of microarc oxidation films prepared in phosphate electrolyte on Zr-1Nb alloy [J]. Surf. Coat. Technol., 2013, 222: 62
doi: 10.1016/j.surfcoat.2013.01.059
17 Cheng Y L, Cao J H, Peng Z M, et al. Wear-resistant coatings formed on zircaloy-2 by plasma electrolytic oxidation in sodium aluminate electrolytes [J]. Electrochim. Acta, 2014, 116: 453
doi: 10.1016/j.electacta.2013.11.079
18 Cheng Y L, Matykina E, Skeldon P, et al. Characterization of plasma electrolytic oxidation coatings on zircaloy-4 formed in different electrolytes with AC current regime [J]. Electrochim. Acta, 2011, 56: 8467
doi: 10.1016/j.electacta.2011.07.034
19 Mittra J, Kavalur A, Kumbhar N T, et al. Effectiveness of pulsed laser deposited ZrO2 surface film over autoclaved oxide film on a Zr alloy for hydrogen barrier application [J]. Surf. Coat. Technol., 2020, 404: 126548
doi: 10.1016/j.surfcoat.2020.126548
20 Chen S N, Zhao Y M, Zhang Y F, et al. Influence of carbon content on the structure and tribocorrosion properties of TiAlCN/TiAlN/TiAl multilayer composite coatings [J]. Surf. Coat. Technol., 2021, 411: 126886
doi: 10.1016/j.surfcoat.2021.126886
21 Huang J, Shi X W, Liao B, et al. Composition control of TiAlN thin film by a novel multi-arc magnetic filter system [J]. China Surf. Eng., 2019, 32(2): 27
黄 杰, 史学伟, 廖 斌 等. 新型多弧磁过滤系统对TiAlN薄膜的组分调控 [J]. 中国表面工程, 2019, 32(2): 27
22 Wei K J, Wang X P, Li J H, et al. In-situ electrochemical study of plasma electrolytic oxidation treated Zr3Al based alloy in 300℃/14 MPa lithium borate buffer solution [J]. Thin Solid Films, 2020, 707: 138066
doi: 10.1016/j.tsf.2020.138066
23 Wei K J, Zhang Y F, Yu J H, et al. Analyses of hydrogen release on Zirlo alloy anode during plasma electrolytic oxidation [J]. Mater. Chem. Phys., 2020, 251: 123054
doi: 10.1016/j.matchemphys.2020.123054
24 Nakajima M, Miura Y, Fushimi K, et al. Spark anodizing behaviour of titanium and its alloys in alkaline aluminate electrolyte [J]. Corros. Sci., 2009, 51(7): 1534
doi: 10.1016/j.corsci.2008.10.021
25 Wang X P, Guan H H, Liao Y Z, et al. Enhancement of high temperature steam oxidation resistance of Zr-1Nb alloy with ZrO2/Cr bilayer coating [J]. Corros. Sci., 2021, 187: 109494
doi: 10.1016/j.corsci.2021.109494
26 Han X C, Xue J X, Peng S M, et al. An interesting oxidation phenomenon of Cr coatings on Zry-4 substrates in high temperature steam environment [J]. Corros. Sci., 2019, 156: 117
doi: 10.1016/j.corsci.2019.05.017
27 Wang F F, Zhang F X, Zheng L J, et al. Structure and corrosion properties of Cr coating deposited on aerospace bearing steel [J]. Appl. Surf. Sci., 2017, 423: 695
doi: 10.1016/j.apsusc.2017.06.099
28 Wang Y, Tang H, Wang R, et al. Cathodic voltage-dependent composition, microstructure and corrosion resistance of plasma electrolytic oxidation coatings formed on Zr-4 alloy [J]. RSC Adv., 2016, 6: 34616
doi: 10.1039/C6RA06197D
29 Kim H H, Kim J H, Moon J Y, et al. High-temperature oxidation behavior of zircaloy-4 and Zirlo in steam ambient [J]. J. Mater. Sci. Technol., 2010, 26(9): 827
30 Wang Y, Tang H, Han X C, et al. Oxidation resistance improvement of Zr-4 alloy in 1000℃ steam environment using ZrO2/FeCrAl bilayer coating [J]. Surf. Coat. Technol., 2018, 349: 807
doi: 10.1016/j.surfcoat.2018.05.005
31 Sawarn T K, Banerjee S, Samanta A, et al. Study of oxide and α-Zr(O) growth kinetics from high temperature steam oxidation of zircaloy-4 cladding [J]. J. Nucl. Mater., 2015, 467: 820
doi: 10.1016/j.jnucmat.2015.10.012
32 Leistikow S, Schanz G. Oxidation kinetics and related phenomena of zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions [J]. Nucl. Eng. Des., 1987, 103(1): 65
doi: 10.1016/0029-5493(87)90286-X
33 Baek J H, Park K B, Jeong Y H. Oxidation kinetics of zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at temperatures of 700~1200℃ [J]. J. Nucl. Mater., 2004, 335: 443
doi: 10.1016/j.jnucmat.2004.08.007
34 Wang X P, Liao Y Z, Guan H H, et al. High temperature oxidation behavior of pure Zr coated by microarc oxidation in 1000~1200℃ steam [J]. Surf. Technol., 2021, 50(6): 23
王兴平, 廖燚钊, 关浩浩 等. 锆表面微弧氧化膜1000~1200℃高温蒸汽氧化行为研究 [J]. 表面技术, 2021, 50(6): 23
35 Baek J H, Jeong Y H. Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation [J]. J. Nucl. Mater., 2008, 372: 152
doi: 10.1016/j.jnucmat.2007.02.011
36 Lee C M, Mok Y K, Sohn D S. High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding [J]. J. Nucl. Mater., 2017, 496: 343
doi: 10.1016/j.jnucmat.2017.10.013
37 Brachet J C, Rouesne E, Ribis J, et al. High temperature steam oxidation of chromium-coated zirconium-based alloys: kinetics and process [J]. Corros. Sci., 2020, 167: 108537
doi: 10.1016/j.corsci.2020.108537
38 Kim J M, Ha T H, Kim I H, et al. Microstructure and oxidation behavior of CrAl laser-coated zircaloy-4 alloy [J]. Metals, 2017, 7: 59
doi: 10.3390/met7020059
39 Zhang J S, Liao J J, Wei T G, et al. Oxygen diffusion behavior of oxidized zirconium alloy during vacuum annealing treatment [J]. Rare Met. Mater. Eng., 2021, 50: 1590
40 Hayward P J, George I M. Dissolution of ZrO2 in molten zircaloy-4 [J]. J. Nucl. Mater., 1999, 265: 69
doi: 10.1016/S0022-3115(98)00512-1
41 Pelleg J. Diffusion in ZrO2 (zirconia) [A]. Pelleg J. Diffusion in Ceramics [M]. Cham: Springer, 2016: 301
42 Sabioni A C S, Huntz A M, Silva F, et al. Diffusion of iron in Cr2O3: polycrystals and thin films [J]. Mater. Sci. Eng., 2005, 392A: 254
43 Hagel W C. Anion diffusion in α-Cr2O3 [J]. J. Am. Ceram. Soc., 1965, 48: 70
doi: 10.1111/jace.1965.48.issue-2
44 Kashkarov E, Afornu B, Sidelev D, et al. Recent advances in protective coatings for accident tolerant Zr-based fuel claddings [J]. Coatings, 2021, 11: 557
doi: 10.3390/coatings11050557
45 Abriata J P, Garcés J, Versaci R. The O-Zr (oxygen-zirconium) system [J]. Bull. Alloy Phase Diagrams, 1986, 7(2): 116
doi: 10.1007/BF02881546
46 Kim H L, Breslin J, Kim H G, et al. Social semantic cloud of tags: semantic model for folksonomies [J]. Knowl. Manage. Res. Pract., 2010, 8(3): 193
doi: 10.1057/kmrp.2010.10
47 Uetsuka H, Furuta T, Kawasaki S. Embrittlement of zircaloy-4 due to oxidation in environment of stagnant steam [J]. J. Nucl. Sci. Technol., 1982, 19(2): 158
doi: 10.1080/18811248.1982.9734128
48 Burton B, Reynolds G L. The estimation of the diffusion coefficient of oxygen in Cr2O3 from creep measurements [J]. J. Mater. Sci., 1978, 13: 219
doi: 10.1007/BF00739299
49 Zeng Z, Natesan K, Cai Z, et al. Effect of element diffusion through metallic networks during oxidation of type 321 stainless steel [J]. J. Mater. Eng. Perform., 2014, 23(4): 1247
doi: 10.1007/s11665-014-0909-8
50 Horita T, Yamaji K, Xiong Y P, et al. Oxide scale formation of Fe-Cr alloys and oxygen diffusion in the scale [J]. Solid State Ionics, 2004, 175: 157
doi: 10.1016/j.ssi.2004.09.045
51 England D M, Virkar A V. Oxidation kinetics of some nickel-based superalloy foils and electronic resistance of the oxide scale formed in air part I [J]. J. Electrochem. Soc., 1999, 146: 3196
doi: 10.1149/1.1392454
52 Lobnig R E, Schmidt H P, Hennesen K, et al. Diffusion of cations in chromia layers grown on iron-base alloys [J]. Oxid. Met., 1992, 37: 81
doi: 10.1007/BF00665632
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!