|
|
High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating |
WANG Xingping1,2( ), XUE Wenbin2, WANG Wenxuan3 |
1.School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2.Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China 3.School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
|
Cite this article:
WANG Xingping, XUE Wenbin, WANG Wenxuan. High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating. Chinese Journal of Materials Research, 2023, 37(10): 759-769.
|
Abstract A ZrO2/Cr composite coating on Zr-2 alloy was prepared by micro-arc oxidation (MAO) and filtered cathodic vacuum arc deposition (FCVAD) treatments. The oxidation resistance of bare and ZrO2/Cr-coated Zr alloys was estimated in 900~1100°C steam environment using a thermogravimetric analyzer (TGA) and their cross-sectional structures, phase constituents and composition depth profiles before and after steam oxidation were analyzed. The results showed that the mass gain per unit area of ZrO2/Cr-coated Zr alloy was about 3/8, 1/4 and 2/5 of that of bare Zr alloy after 3600 s steam oxidation at 900, 1000 and 1100℃, respectively. In high temperature water vapor, the dense Cr2O3 film formed on the surface of ZrO2/Cr-coated one suppressed the inward oxygen diffusion, which improved the steam oxidation resistance of Zr-2 alloy and inhibited the occurrence of breakaway oxidation at 1000°C. Before the Cr layer of ZrO2/Cr composite coating was completely oxidized into Cr2O3, the oxidation of Cr layer was principally controlled by the outward chromium diffusion rather than inward oxygen diffusion. The MAO interlayer restrained hydrogen permeation into Zr alloy substrate during the steam oxidation.
|
Received: 28 November 2022
|
|
Fund: Beijing Natural Science Foundation(2172029);National Natural Science Foundation of China(51671032);Science and Technology Program of Gansu Province(20JR10RA269);Innovation Fund Project of Gansu Education Department(2021B-099);Young Scholars Science Foundation of Lanzhou Jiaotong University(2023002) |
Corresponding Authors:
WANG Xingping, Tel: 18298491716, E-mail: wangxplju@163.com
|
1 |
Terrani K A. Accident tolerant fuel cladding development: promise, status, and challenges [J]. J. Nucl. Mater., 2018, 501: 13
doi: 10.1016/j.jnucmat.2017.12.043
|
2 |
Yang J Q, Steinbrück M, Tang C C, et al. Review on chromium coated zirconium alloy accident tolerant fuel cladding [J]. J. Alloys Compd., 2022, 895: 162450
doi: 10.1016/j.jallcom.2021.162450
|
3 |
Han X C, Chen C, Tan Y Q, et al. A systematic study of the oxidation behavior of Cr coatings on Zry4 substrates in high temperature steam environment [J]. Corros. Sci., 2020, 174: 108826
doi: 10.1016/j.corsci.2020.108826
|
4 |
Park J H, Kim H G, Park J Y, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings [J]. Surf. Coat. Technol., 2015, 280: 256
doi: 10.1016/j.surfcoat.2015.09.022
|
5 |
Zeng S, Li P C, Tian J H, et al. Influence of Al content on the oxidation behavior of CrAl coating on Zry-4 alloys in 1200℃ steam [J]. Corros. Sci., 2022, 198: 110115
doi: 10.1016/j.corsci.2022.110115
|
6 |
He L X, Liu C H, Lin J H, et al. Microstructure, oxidation and corrosion properties of FeCrAl coatings with low Al content prepared by magnetron sputtering for accident tolerant fuel cladding [J]. J. Nucl. Mater., 2021, 551: 152966
doi: 10.1016/j.jnucmat.2021.152966
|
7 |
Tang C C, Steinbrueck M, Stueber M, et al. Deposition, characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4 [J]. Corros. Sci., 2018, 135: 87
doi: 10.1016/j.corsci.2018.02.035
|
8 |
Alat E, Motta A T, Comstock R J, et al. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding [J]. J. Nucl. Mater., 2016, 478: 236
doi: 10.1016/j.jnucmat.2016.05.021
|
9 |
Brachet J C, Idarraga-trujillo I, Flem M L, et al. Early studies on Cr-coated zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors [J]. J. Nucl. Mater., 2019, 517: 268
doi: 10.1016/j.jnucmat.2019.02.018
|
10 |
Shan W Y, Wang Y L, Li J, et al. High temperature oxidation resistance of Cr based coating on zirconium alloy [J]. Chin. J. Mater. Res., 2022, 36(9): 699
doi: 10.11901/1005.3093.2021.200
|
|
单位摇, 王永利, 李 静 等. 锆合金表面Cr基涂层的耐高温氧化性能 [J]. 材料研究学报, 2022, 36(9): 699
doi: 10.11901/1005.3093.2021.200
|
11 |
McCafferty E. Standard electrode potentials of the elements as a fundamental periodic property of atomic number [J]. Electrochim. Acta, 2007, 52: 5884
doi: 10.1016/j.electacta.2007.03.022
|
12 |
Jin D L, Ni N, Guo Y, et al. Corrosion of the bonding at FeCrAl/Zr alloy interfaces in steam [J]. J. Nucl. Mater., 2018, 508: 411
doi: 10.1016/j.jnucmat.2018.05.071
|
13 |
Wang J H, Yao M Y, Zhou B X, et al. Hydrogen absorption behavior of zircaloy corroded in super-heated steam [J]. Rare Met. Mater. Eng., 2011, 40(5): 833
|
|
王锦红, 姚美意, 周邦新 等. Zr-Sn系合金在过热蒸气中的腐蚀吸氢行为 [J]. 稀有金属材料与工程, 2011, 40(5): 833
|
14 |
Yang J X, Wang X, Wen Q, et al. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr-1Nb alloy [J]. J. Nucl. Mater., 2015, 467: 186
doi: 10.1016/j.jnucmat.2015.09.033
|
15 |
Lai P, Zhang H, Zhang L F, et al. Effect of micro-arc oxidation on fretting wear behavior of zirconium alloy exposed to high temperature water [J]. Wear, 2019, 424-425: 53
doi: 10.1016/j.wear.2019.02.001
|
16 |
Zou Z F, Xue W B, Jia X N, et al. Effect of voltage on properties of microarc oxidation films prepared in phosphate electrolyte on Zr-1Nb alloy [J]. Surf. Coat. Technol., 2013, 222: 62
doi: 10.1016/j.surfcoat.2013.01.059
|
17 |
Cheng Y L, Cao J H, Peng Z M, et al. Wear-resistant coatings formed on zircaloy-2 by plasma electrolytic oxidation in sodium aluminate electrolytes [J]. Electrochim. Acta, 2014, 116: 453
doi: 10.1016/j.electacta.2013.11.079
|
18 |
Cheng Y L, Matykina E, Skeldon P, et al. Characterization of plasma electrolytic oxidation coatings on zircaloy-4 formed in different electrolytes with AC current regime [J]. Electrochim. Acta, 2011, 56: 8467
doi: 10.1016/j.electacta.2011.07.034
|
19 |
Mittra J, Kavalur A, Kumbhar N T, et al. Effectiveness of pulsed laser deposited ZrO2 surface film over autoclaved oxide film on a Zr alloy for hydrogen barrier application [J]. Surf. Coat. Technol., 2020, 404: 126548
doi: 10.1016/j.surfcoat.2020.126548
|
20 |
Chen S N, Zhao Y M, Zhang Y F, et al. Influence of carbon content on the structure and tribocorrosion properties of TiAlCN/TiAlN/TiAl multilayer composite coatings [J]. Surf. Coat. Technol., 2021, 411: 126886
doi: 10.1016/j.surfcoat.2021.126886
|
21 |
Huang J, Shi X W, Liao B, et al. Composition control of TiAlN thin film by a novel multi-arc magnetic filter system [J]. China Surf. Eng., 2019, 32(2): 27
|
|
黄 杰, 史学伟, 廖 斌 等. 新型多弧磁过滤系统对TiAlN薄膜的组分调控 [J]. 中国表面工程, 2019, 32(2): 27
|
22 |
Wei K J, Wang X P, Li J H, et al. In-situ electrochemical study of plasma electrolytic oxidation treated Zr3Al based alloy in 300℃/14 MPa lithium borate buffer solution [J]. Thin Solid Films, 2020, 707: 138066
doi: 10.1016/j.tsf.2020.138066
|
23 |
Wei K J, Zhang Y F, Yu J H, et al. Analyses of hydrogen release on Zirlo alloy anode during plasma electrolytic oxidation [J]. Mater. Chem. Phys., 2020, 251: 123054
doi: 10.1016/j.matchemphys.2020.123054
|
24 |
Nakajima M, Miura Y, Fushimi K, et al. Spark anodizing behaviour of titanium and its alloys in alkaline aluminate electrolyte [J]. Corros. Sci., 2009, 51(7): 1534
doi: 10.1016/j.corsci.2008.10.021
|
25 |
Wang X P, Guan H H, Liao Y Z, et al. Enhancement of high temperature steam oxidation resistance of Zr-1Nb alloy with ZrO2/Cr bilayer coating [J]. Corros. Sci., 2021, 187: 109494
doi: 10.1016/j.corsci.2021.109494
|
26 |
Han X C, Xue J X, Peng S M, et al. An interesting oxidation phenomenon of Cr coatings on Zry-4 substrates in high temperature steam environment [J]. Corros. Sci., 2019, 156: 117
doi: 10.1016/j.corsci.2019.05.017
|
27 |
Wang F F, Zhang F X, Zheng L J, et al. Structure and corrosion properties of Cr coating deposited on aerospace bearing steel [J]. Appl. Surf. Sci., 2017, 423: 695
doi: 10.1016/j.apsusc.2017.06.099
|
28 |
Wang Y, Tang H, Wang R, et al. Cathodic voltage-dependent composition, microstructure and corrosion resistance of plasma electrolytic oxidation coatings formed on Zr-4 alloy [J]. RSC Adv., 2016, 6: 34616
doi: 10.1039/C6RA06197D
|
29 |
Kim H H, Kim J H, Moon J Y, et al. High-temperature oxidation behavior of zircaloy-4 and Zirlo in steam ambient [J]. J. Mater. Sci. Technol., 2010, 26(9): 827
|
30 |
Wang Y, Tang H, Han X C, et al. Oxidation resistance improvement of Zr-4 alloy in 1000℃ steam environment using ZrO2/FeCrAl bilayer coating [J]. Surf. Coat. Technol., 2018, 349: 807
doi: 10.1016/j.surfcoat.2018.05.005
|
31 |
Sawarn T K, Banerjee S, Samanta A, et al. Study of oxide and α-Zr(O) growth kinetics from high temperature steam oxidation of zircaloy-4 cladding [J]. J. Nucl. Mater., 2015, 467: 820
doi: 10.1016/j.jnucmat.2015.10.012
|
32 |
Leistikow S, Schanz G. Oxidation kinetics and related phenomena of zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions [J]. Nucl. Eng. Des., 1987, 103(1): 65
doi: 10.1016/0029-5493(87)90286-X
|
33 |
Baek J H, Park K B, Jeong Y H. Oxidation kinetics of zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at temperatures of 700~1200℃ [J]. J. Nucl. Mater., 2004, 335: 443
doi: 10.1016/j.jnucmat.2004.08.007
|
34 |
Wang X P, Liao Y Z, Guan H H, et al. High temperature oxidation behavior of pure Zr coated by microarc oxidation in 1000~1200℃ steam [J]. Surf. Technol., 2021, 50(6): 23
|
|
王兴平, 廖燚钊, 关浩浩 等. 锆表面微弧氧化膜1000~1200℃高温蒸汽氧化行为研究 [J]. 表面技术, 2021, 50(6): 23
|
35 |
Baek J H, Jeong Y H. Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation [J]. J. Nucl. Mater., 2008, 372: 152
doi: 10.1016/j.jnucmat.2007.02.011
|
36 |
Lee C M, Mok Y K, Sohn D S. High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding [J]. J. Nucl. Mater., 2017, 496: 343
doi: 10.1016/j.jnucmat.2017.10.013
|
37 |
Brachet J C, Rouesne E, Ribis J, et al. High temperature steam oxidation of chromium-coated zirconium-based alloys: kinetics and process [J]. Corros. Sci., 2020, 167: 108537
doi: 10.1016/j.corsci.2020.108537
|
38 |
Kim J M, Ha T H, Kim I H, et al. Microstructure and oxidation behavior of CrAl laser-coated zircaloy-4 alloy [J]. Metals, 2017, 7: 59
doi: 10.3390/met7020059
|
39 |
Zhang J S, Liao J J, Wei T G, et al. Oxygen diffusion behavior of oxidized zirconium alloy during vacuum annealing treatment [J]. Rare Met. Mater. Eng., 2021, 50: 1590
|
40 |
Hayward P J, George I M. Dissolution of ZrO2 in molten zircaloy-4 [J]. J. Nucl. Mater., 1999, 265: 69
doi: 10.1016/S0022-3115(98)00512-1
|
41 |
Pelleg J. Diffusion in ZrO2 (zirconia) [A]. Pelleg J. Diffusion in Ceramics [M]. Cham: Springer, 2016: 301
|
42 |
Sabioni A C S, Huntz A M, Silva F, et al. Diffusion of iron in Cr2O3: polycrystals and thin films [J]. Mater. Sci. Eng., 2005, 392A: 254
|
43 |
Hagel W C. Anion diffusion in α-Cr2O3 [J]. J. Am. Ceram. Soc., 1965, 48: 70
doi: 10.1111/jace.1965.48.issue-2
|
44 |
Kashkarov E, Afornu B, Sidelev D, et al. Recent advances in protective coatings for accident tolerant Zr-based fuel claddings [J]. Coatings, 2021, 11: 557
doi: 10.3390/coatings11050557
|
45 |
Abriata J P, Garcés J, Versaci R. The O-Zr (oxygen-zirconium) system [J]. Bull. Alloy Phase Diagrams, 1986, 7(2): 116
doi: 10.1007/BF02881546
|
46 |
Kim H L, Breslin J, Kim H G, et al. Social semantic cloud of tags: semantic model for folksonomies [J]. Knowl. Manage. Res. Pract., 2010, 8(3): 193
doi: 10.1057/kmrp.2010.10
|
47 |
Uetsuka H, Furuta T, Kawasaki S. Embrittlement of zircaloy-4 due to oxidation in environment of stagnant steam [J]. J. Nucl. Sci. Technol., 1982, 19(2): 158
doi: 10.1080/18811248.1982.9734128
|
48 |
Burton B, Reynolds G L. The estimation of the diffusion coefficient of oxygen in Cr2O3 from creep measurements [J]. J. Mater. Sci., 1978, 13: 219
doi: 10.1007/BF00739299
|
49 |
Zeng Z, Natesan K, Cai Z, et al. Effect of element diffusion through metallic networks during oxidation of type 321 stainless steel [J]. J. Mater. Eng. Perform., 2014, 23(4): 1247
doi: 10.1007/s11665-014-0909-8
|
50 |
Horita T, Yamaji K, Xiong Y P, et al. Oxide scale formation of Fe-Cr alloys and oxygen diffusion in the scale [J]. Solid State Ionics, 2004, 175: 157
doi: 10.1016/j.ssi.2004.09.045
|
51 |
England D M, Virkar A V. Oxidation kinetics of some nickel-based superalloy foils and electronic resistance of the oxide scale formed in air part I [J]. J. Electrochem. Soc., 1999, 146: 3196
doi: 10.1149/1.1392454
|
52 |
Lobnig R E, Schmidt H P, Hennesen K, et al. Diffusion of cations in chromia layers grown on iron-base alloys [J]. Oxid. Met., 1992, 37: 81
doi: 10.1007/BF00665632
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|