Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (7): 489-499    DOI: 10.11901/1005.3093.2021.148
ARTICLES Current Issue | Archive | Adv Search |
Ablation Properties and Mechanisms of C/ZrC-SiC Composites with Pyrolytic Carbon Interlayer of Different Thickness
YANG Xiaohui1,2(), LI Kezhi1, BAI Longteng2, GUO Yawei2
1.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
2.Xi'an Aerospace Propulsion Institute, Xi'an 710010, China
Cite this article: 

YANG Xiaohui, LI Kezhi, BAI Longteng, GUO Yawei. Ablation Properties and Mechanisms of C/ZrC-SiC Composites with Pyrolytic Carbon Interlayer of Different Thickness. Chinese Journal of Materials Research, 2022, 36(7): 489-499.

Download:  HTML  PDF(19295KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composites of C/ZrC-SiC with pyrolytic carbon (PyC) interlayers of different thickness, namely, S5-C/ZrC-SiC, S15-C/ZrC-SiC, S30-C/ZrC-SiC, and S50-C/ZrC-SiC were prepared by adjusting the deposition time. The variation of density, microstructure and ablation properties of C/ZrC-SiC composites with interlayer PyC of different thickness was systematically studied. The results show that with the increasing thickness of interlayer PyC, the density and porosity of C/ZrC-SiC composites decrease, but the content of the pioneer impregnation pyrolysis ZrC matrix decreases first and then increases. As for 20 s short time oxyacetylene ablation, S30-C/ZrC-SiC composites presents the best ablation performance, and its mass ablation rates and linear ablation rates are -0.84 mg/s and 3.00 μm/s, respectively; while for 60 s long time cycle ablation test, S15-C/ZrC-SiC composites has the best ablation performance, and its mass ablation rates and linear ablation rates are 1.22 mg/s and 3.80 μm/s, respectively. The mechanism for the 20 s oxyacetylene ablation of C/ZrC-SiC composites may be ascribed to mechanical erosion, while for the second 60 s oxyacetylene ablation of C/ZrC-SiC composites, the ablation mechanism may be described as that the ablation process changes from mechanical erosion to thermo-physical and thermo-chemical ablation.

Key words:  composite      pyrolytic carbon interface      ablation behaviors      ablation mechanisms     
Received:  24 February 2021     
ZTFLH:  TB322  
Fund: National Natural Science Foundation of China(U51521061);National Natural Science Foundation of China(51772247)
About author:  YANG Xiaohui, Tel: 15877384137, E-mail: yangxiaohui925@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.148     OR     https://www.cjmr.org/EN/Y2022/V36/I7/489

SampleWeight before deposition/gWeight after deposition/gRelative weight gain rate/%Estimated thickness of interface layer/μm
S51121141.790.03
S1510812112.040.21
S3011615231.030.50
S5011818556.780.88
Table 1  Weight gain rates before and after PyC interface deposition
Fig.1  SEM images of PyC interface layer fabricated by different deposition time (a) S5; (b) S15; (c) S30; (d) S50
SamplePyC/%PIP-SiC/%PIP-ZrC/%Density/g·cm-3Open porosity/%
S50.4463.0211.771.99±0.0422.77±1.82
S153.4262.079.991.95±0.0222.42±0.74
S309.9359.658.161.94±0.0120.77±1.87
S5022.4451.888.391.88±0.0219.45±1.33
Table 2  PyC, SiC and ZrC content, density and open porosity of C/ZrC-SiC composites
Fig.2  Cross sectional SEM images of C/ZrC-SiC composites with different PyC interface thickness (a) S5; (b) S15; (c) S30; (d) S50
Fig.3  20 s ablation properties of C/ZrC-SiC composites with different PyC interface thickness mass and linear ablation rates; (b) ablation temperature curves
Fig.4  Macrographs of C/ZrC-SiC composites with different PyC interface thickness after 20 s ablation (a) S5; (b) S15; (c) S30; (d) S50
Fig.5  XRD patterns of C/ZrC-SiC composites with different PyC interface thickness after 20 s ablation
Fig.6  SEM images of naked fibers in the ablation center of C/ZrC-SiC composites with different PyC interface thickness (a) S5; (b) S15; (c) S30; (d) S50
Fig.7  SEM micrograph and EDS analysis of 20 s ablation samples of S50-C/ZrC-SiC composites (a) lower multiple ablation micrograph; (b) edge region micrograph and EDS analysis results; (c) enlargement view of region 1 in figure (b); (d) enlargement view of region 2 in figure (b); (e) micrograph and EDS analysis results of transition region A; (f) enlargement view of region 3 in figure (e); (g) micrograph and EDS analysis results of transition region B; (h) enlargement view of region 4 in Fig. (g)
Fig.8  Macrographs of C/ZrC-SiC composites with different interface thickness after another 60 s ablation (a) S5; (b) S15; (c) S30; (d) S50
SampleMass ablation rates/mg·s-1Linear ablation rates/μm·s-1Maximum ablation temperature/℃
20 s60 s20 s60 s20 s60 s
S5-1.591.627.085.3823942385
S15-1.121.226.833.8023822382
S30-0.841.133.007.4423592356
S50-1.461.084.024.6623232325
Table 3  60 s and 20 s ablation performance of C/ZrC-SiC composites with different PyC interface thickness
Fig.9  Conductivity of C/ZrC-SiC composite with different PyC interface thickness
SampleMechanical scouring resistanceOxidation and ablation resistanceRemarks
S5★★★★★the more, the stronger their ability
S15★★★★★
S30★★★★
S50★★★★★
Table 4  Mechanical erosion resistance and oxidation ablation resistance of C/ZrC-SiC composites with different PyC interface thickness
Fig.10  Linear thermal expansion rates between C/ZrC-SiC composites with different PyC interface thicknesses and ZrO2
1 Glass D. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles [A]. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference [C]. Dayton, Ohio: AIAA, 2008
2 Balat-Pichelin M, Charpentier L, Panerai F, et al. Passive/active oxidation transition for CMC structural materials designed for the IXV vehicle re-entry phase [J]. J. Eur. Ceram. Soc., 2015, 35: 487
doi: 10.1016/j.jeurceramsoc.2014.09.026
3 Chen Y F, Hong C Q, Hu C L, et al. Ceramic-based thermal protection materials for aerospace vehicles [J]. Adv. Ceram., 2017, 38: 311
陈玉峰, 洪长青, 胡成龙 等. 空天飞行器用热防护陶瓷材料 [J]. 现代技术陶瓷, 2017, 38: 311
4 Yang X H, Li K Z, Bai L T, et al. Thermal ablation behavior of SiC coating for 3D braided carbon fiber reinforced ZrC-SiC composites in different heat fluxes [J]. Vacuum, 2018, 156: 334
doi: 10.1016/j.vacuum.2018.07.035
5 Peng Z, Sun W, Xiong X, et al. A novel Cr-doped Al2O3-SiC-ZrC composite coating for ablative protection of C/C-ZrC-SiC composites [J]. J. Eur. Ceram. Soc., 2018, 38: 2897
doi: 10.1016/j.jeurceramsoc.2018.02.015
6 Wang S L, Li H, Ren M S, et al. Microstructure and ablation mechanism of C/C-ZrC-SiC composites in a plasma flame [J]. Ceram. Int., 2017, 43: 10661
doi: 10.1016/j.ceramint.2017.04.089
7 Zhao Z G, Li K Z, Kou G, et al. Mechanical properties and ablation behavior of C/C-ZrC and C/C-ZrC-SiC composites prepared by precursor infiltration and pyrolysis combined with chemical vapor infiltration [J]. Ceram. Int., 2018, 44: 23191
doi: 10.1016/j.ceramint.2018.09.131
8 Chen S A, Li G D, Hu H F, et al. Microstructure and properties of ablative C/ZrC–SiC composites prepared by reactive melt infiltration of zirconium and vapour silicon infiltration [J]. Ceram. Int., 2017, 43: 3439
doi: 10.1016/j.ceramint.2016.09.107
9 Zhang L R, Dong S M, Zhou H J, et al. 3D Cf/ZrC-SiC composites fabricated with ZrC nanoparticles and ZrSi2 alloy [J]. Ceram. Int., 2014, 40: 11795
doi: 10.1016/j.ceramint.2014.04.009
10 Wang Z, Dong S M, Ding Y S, et al. Mechanical properties and microstructures of Cf/SiC-ZrC composites using T700SC carbon fibers as reinforcements [J]. Ceram. Int., 2011, 37: 695
doi: 10.1016/j.ceramint.2010.09.048
11 Zhang M Y, Li K Z, Shi X H, et al. Effects of SiC interphase on the mechanical and ablation properties of C/C-ZrC-ZrB2-SiC composites prepared by precursor infiltration and pyrolysis [J]. Mater. Des., 2017, 122: 322
doi: 10.1016/j.matdes.2017.02.086
12 Yan C L, Liu R J, Cao Y B, et al. Preparation and properties of 3D needle-punched C/ZrC-SiC composites by polymer infiltration and pyrolysis process [J]. Ceram. Int., 2014, 40: 10961
doi: 10.1016/j.ceramint.2014.03.099
13 Yang B, Zhou X G, Yu J S. The properties of Cf/SiC composites prepared from different precursors [J]. Ceram. Int., 2015, 41: 4207
doi: 10.1016/j.ceramint.2014.12.111
14 Yang X H, Li K Z, Bai L T. Effects of preform structures on the mechanical and ablation properties of C/ZrC-SiC composites [J]. Int. J. Appl. Ceram. Technol., 2020, 17: 1582
doi: 10.1111/ijac.13464
15 Xie J, Li K Z, Sun G D, et al. Effects of surface structure unit of 2D needled carbon fiber preform on the microstructure and ablation properties of C/C-ZrC-SiC composites [J]. Ceram. Int., 2019, 45: 11912
doi: 10.1016/j.ceramint.2019.03.078
16 Yan C L, Liu R J, Zhang C R, et al. Effect of PyC interphase thickness on mechanical and ablation properties of 3D Cf/ZrC-SiC composite [J]. Ceram. Int., 2016, 42: 12756
doi: 10.1016/j.ceramint.2016.04.187
17 Wang D K, Dong S M, Zhou H J, et al. Effect of pyrolytic carbon interface on the properties of 3D C/ZrC–SiC composites fabricated by reactive melt infiltration [J]. Ceram. Int., 2016, 42: 10272
doi: 10.1016/j.ceramint.2016.03.155
18 Feng B, Li H J, Zhang Y L, et al. Effect of SiC/ZrC ratio on the mechanical and ablation properties of C/C-SiC-ZrC composites [J]. Corros. Sci., 2014, 82: 27
doi: 10.1016/j.corsci.2013.12.017
19 Li Q G, Zhou H J, Dong S M, et al. Fabrication and comparison of 3D Cf/ZrC-SiC composites using ZrC particles/polycarbosilane and ZrC precursor/polycarbosilane [J]. Ceram. Int., 2012, 38: 5271
doi: 10.1016/j.ceramint.2012.02.023
20 Matveeva A Y, Lomov S V, Gorbatikh L. Debonding at the fiber/matrix interface in carbon nanotube reinforced composites: modelling investigation [J]. Comput. Mater. Sci., 2019, 159: 412
doi: 10.1016/j.commatsci.2018.10.031
21 Yin H F, Xu Y D, Zhang L T. Effect of deposition condition on deposition mode and morphology of pyrolytic carbon [J]. J. Inorg. Mater., 1999, 14: 769
尹洪峰, 徐永东, 张立同. 热解条件对热解碳沉积模式和形貌的影响 [J]. 无机材料学报, 1999, 14: 769
22 Yin H F, Xu Y D, Cheng L F, et al. Effect of interphases on the properties of 3-D Cf/SiCm composites [J]. J. Chin. Ceram. Soc., 2000, 28: 1
尹洪峰, 徐永东, 成来飞 等. 界面相对碳纤维增韧碳化硅复合材料性能的影响 [J]. 硅酸盐学报, 2000, 28: 1
23 Xie J, Li K Z, Li H J, et al. Ablation behavior and mechanism of C/C-ZrC-SiC composites under an oxyacetylene torch at 3000℃ [J]. Ceram. Int., 2013, 39: 4171
doi: 10.1016/j.ceramint.2012.10.273
24 Nie J J, Xu Y D, Zhang L T, et al. Microstructure, thermophysical, and ablative performances of a 3D Needled C/C-SiC composite [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 197
doi: 10.1111/j.1744-7402.2008.02341.x
25 Yang X H, Li K Z, Bai L T, et al. Effects of PyC interface thickness on the mechanical properties of 3D needled C/ZrC-SiC composites [J]. Aerospace Mater. Technol., 2021, 51(2): 38
杨晓辉, 李克智, 白龙腾 等. PyC界面层厚度对三维针刺C/ZrC-SiC复合材料力学性能影响规律 [J]. 宇航材料工艺, 2021, 51(2): 38
26 Wang L S. ZrO2 ceramic [J]. Ceram. Eng., 1997, 31: 40
王零森. 二氧化锆陶瓷 [J]. 陶瓷工程, 1997, 31: 40
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!