Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (3): 213-219    DOI: 10.11901/1005.3093.2021.112
ARTICLES Current Issue | Archive | Adv Search |
Effect of Y on Properties of Mg-14Al-5Si Alloy
FAN Jinping(), JIANG Yifeng, PEI Biao, KANG Wenxu
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Cite this article: 

FAN Jinping, JIANG Yifeng, PEI Biao, KANG Wenxu. Effect of Y on Properties of Mg-14Al-5Si Alloy. Chinese Journal of Materials Research, 2022, 36(3): 213-219.

Download:  HTML  PDF(13718KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Y addition on the microstructure and mechanical properties of Mg-14Al-5Si alloy was investigated by means of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), optical microscope (OM) and X-ray diffractometer (XRD), as well as Bloch hardness tester and electronic universal testing machine. The results show that the addition of 0.5%, 0.8%, 1.0% and 1.5% (mass fraction) Y can induce obvious changes of phases in the Mg-14Al-5Si alloy, namely, the silicide phase Mg2Si changes from coarse dendrite to polygon and round shape, and the eutectic phase β-Mg17Al12 changes from coarse continuous grid to fine grid and islets like. The alloying effect for the Y addition amount of 1.0% is the best i.e., the average size of Mg2Si reduced from 42.21 μm to 8.15 μm, the mechanical properties of the alloy also reach the best with hardness of 135HB, tensile strength of 147 MPa, yield strength of 76 MPa and elongation of 5.04% respectively. White block Mg-Si-Y compound is found in the alloy with Y1.5%. The element Y can promote the nucleation of Mg2Si and inhibit the anisotropic growth of Mg2Si. At the same time, Y segregates in the front of the growth of β-Mg17Al12 phase, forming a supercooled structure and inhibiting its growth.

Key words:  metallic materials      Mg-14Al-5Si      Y      microstructure      mechanical property     
Received:  24 January 2021     
ZTFLH:  TG430.4020  
Fund: Technological Development Program of Taiyuan University of Technology(RH19200007)
About author:  FAN Jinping, Tel: 13653603702, E-mail: fjp1974@sina.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.112     OR     https://www.cjmr.org/EN/Y2022/V36/I3/213

AlloySiYAlFeMg
Mg-14Al-5Si5.022-14.0140.011Bal.
Mg-14Al-5Si-0.5Y4.9840.50413.9910.010Bal.
Mg-14Al-5Si-0.8Y5.0130.81214.1160.008Bal.
Mg-14Al-5Si-1Y5.0311.10414.0150.010Bal.
Mg-14Al-5Si-1.5Y4.9961.54914.0210.009Bal.
Table 1  Chemical composition of alloys (mass fraction, %)
Fig.1  XRD pattern of Mg-14Al-5Si alloy
Fig.2  Optical micrograph of Mg-14Al-5Si alloy
Fig.3  XRD pattern of Mg-14Al-5Si alloy modified by 1.5% Y
Fig.4  Optical micrographs of Mg-14Al -5Si alloys modified by 0.5%Y (a),0.8%Y (b),1.0%Y (c),1.5%Y (d)
Fig.5  Average size of Mg2Si particles with different Y addition
Fig.6  SEM micrographs of alloy modified with 1.5% Y (a) and EDS analysis of white massive phase at A (b)
Fig.7  Hardness of Mg-14Al-5Si alloy with different Y addition
Fig.8  Tensile curves of Mg-14Al-5Si alloy with different Y addition
Content/%σb /MPaσ0.2/MPaδ/%
0115581.33
0.5132691.34
0.8160792.90
1.0147765.04
1.5129651.88
Table 2  Tensile strength (σb), yield strength (σ0.2) and elongation (δ) of Mg-14Al-5Si alloy with different Y addition
Fig.9  SEM micrographs of tensile fracture of Mg-14Al-5Si alloy with different Y addition. (a) 0.0%Y, (b) 0.5%Y, (c) 0.8%Y, (d) 1.0%Y, (e) 1.5%Y, and EDS analysis results at B (f)
1 Han B Q, Dunand D C. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids [J]. Mater. Sci. Eng., 2000, 277A: 297
2 Kondori B, Mahmudi R. Effect of Ca additions on the microstructure and creep properties of a cast Mg-Al-Mn magnesium alloy [J]. Mater. Sci. Eng., 2017, 700A: 438
3 Li D, Chen Y L, Hu S P, et al. Effect of Gd addition on microstructure and mechanical properties of wrought AZ31 magnesium alloys [J]. Chin. J. Mater. Res., 2014, 28: 579
李 栋, 陈雨来, 胡水平 等. 添加Gd对变形镁合金AZ31组织与力学性能的影响 [J]. 材料研究学报, 2014, 28: 579
4 Fan J P, Xu B S, Wang S B, et al. Effects of Y on elevated temperature mechanical properties of Mg-8Al-2Sr alloy [J]. Chin. J. Mater. Res., 2012, 26: 132
范晋平, 许并社, 王社斌 等. Y对Mg-8Al-2Sr镁合金高温力学性能的影响 [J]. 材料研究学报, 2012, 26: 132
5 Chen Z H. Heat Resistant Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2007
陈振华. 耐热镁合金 [M]. 北京: 化学工业出版社, 2007
6 Chen K, Li Z Q. Effect of co-modification by Ba and Sb on the microstructure of Mg2Si/Mg-Zn-Si composite and mechanism [J]. J. Alloys Compd., 2014, 592: 196
7 Lü Y Z, Wang Q D, Zeng X Q, et al. Effects of silicon on microstructure, fluidity, mechanical properties, and fracture behaviour of Mg-6Al alloy [J]. Mater. Sci. Technol., 2001, 17: 207
8 Zhang E L, Wei X S, Yang L, et al. Effect of Zn on the microstructure and mechanical properties of Mg-Si alloy [J]. Mater. Sci. Eng., 2010, 527A: 3195
9 Li C, Wu Y Y, Li H, et al. Morphological evolution and growth mechanism of primary Mg2Si phase in Al-Mg2Si alloys [J]. Acta Mater., 2011, 59: 1058
10 Ye L Y, Hu J L, Tang C P, et al. Modification of Mg2Si in Mg-Si alloys with gadolinium [J]. Mater. Charact., 2013, 79: 1
11 Zhang J, Fan Z, Wang Y Q, et al. Microstructural development of Al-15wt.%Mg2Si in situ composite with mischmetal addition [J]. Mater. Sci. Eng., 2000, 281A: 104
12 Ye H Z, Liu X Y. Review of recent studies in magnesium matrix composites [J]. J. Mater. Sci., 2004, 39: 6153
13 Ghandvar H, Idris M H, Ahmad N. Effect of hot extrusion on microstructural evolution and tensile properties of Al-15%Mg2Si-xGd in-situ composites [J]. J. Alloys Compd., 2018, 751: 370
14 Lotfpour M, Emamy M, Allameh S H, et al. Effect of hot extrusion on microstructure and tensile properties of Ca modified Mg-Mg2Si composite [J]. Proced. Mater. Sci., 2015, 11: 38
15 Qin Q D, Zhao Y G. Nonfaceted growth of intermetallic Mg2Si in Al melt during rapid solidification [J]. J. Alloys Compd., 2008, 462: L28
16 Kaygısız Y, Maraşlı N. Hardness and electrical resistivity of Al-13wt% Mg2Si pseudoeutectic alloy [J]. Russ. J. Non-Ferrous Met., 2017, 58: 15
17 Mirshahi F, Meratian M, Panjepour M. Microstructural and mechanical behavior of Mg/Mg2Si composite fabricated by a directional solidification system [J]. Mater. Sci. Eng., 2011, 528A: 8319
18 Wu G L, Fan J P, Jiang Y F, et al. Effect of melt superheating treatment on microstructure and properties of Mg-5Si alloy [J]. Nonferrous Met. Eng., 2020, 10(10): 40
武改林, 范晋平, 蒋一锋 等. 熔体过热处理对Mg-5Si合金组织与性能的影响 [J]. 有色金属工程, 2020, 10(10): 40
19 Lu L, Thong K K, Gupta M. Mg-based composite reinforced by Mg2Si [J]. Compos. Sci. Technol., 2003, 63: 627
20 Ma B X, Wang L P, Guo E J. Modification effect of lanthanum on primary phase Mg2Si in Mg-Si alloys [J]. J. Chin. Rare Earth Soc., 2008, 26: 87
马宝霞, 王丽萍, 郭二军. 镧对Mg-Si合金中Mg2Si相变质的影响 [J]. 中国稀土学报, 2008, 26: 87
21 Fan J P, Wang H, Wu G L, et al. Modifying effect of Ce addition on primary Mg2Si phase in Mg-5Si alloy [J]. Chin. J. Mater. Res., 2019, 33: 683
范晋平, 王 浩, 武改林 等. Ce对Mg-5Si合金中初生Mg2Si相变质的影响 [J]. 材料研究学报, 2019, 33: 683
22 Zhang J, Fan Z, Wang Y Q, et al. Microstructural development of Al-15wt.%Mg2Si in situ composite with mischmetal addition [J]. Mater. Sci. Eng., 2000, 281A: 104
23 Zhang J, Fan Z, Wang Y, et al. Microstructural refinement in Al-Mg2Si in situ composites [J]. J. Mater. Sci. Lett., 1999, 18: 783
24 Liao H C, Sun Y, Sun G X. Restraining effect of strontium on the crystallization of Mg2Si phase during solidification in Al-Si-Mg casting alloys and mechanisms [J]. Mater. Sci. Eng., 2003, 358A: 164
25 Tong W H, Liu Y L, Liu Y K, et al. Effects of Ca-Y compound modification on microstructure and properties of Mg-Si-Zn alloy with high Si content [J]. Chin. J. Nonferrous Met., 2019, 29: 27
童文辉, 刘雨林, 刘玉坤 等. Ca-Y复合变质对高硅Mg-Si-Zn合金组织与性能的影响 [J]. 中国有色金属学报, 2019, 29: 27
26 Zhang Q, Wang Y, Li P. Mechanical properties and strengthening mechanism of as-cast Mg-Y alloys [J]. Trans. Mater. Heat Treat., 2018, 39(12): 8
张 清, 王 莹, 李 萍. 铸态Mg-Y合金的力学性能和强化机制 [J]. 材料热处理学报, 2018, 39(12): 8
27 Zhang Z M, Xu C J, Jia S Z, et al. Microstructure and mechanical properties of Mg-Al-Si alloy with high content of silicon [J]. Trans. Mater. Heat Treat., 2009, 30(5): 140
张忠明, 徐春杰, 贾树卓 等. 高硅含量镁铝硅合金的组织与力学性能 [J]. 材料热处理学报, 2009, 30(5): 140
28 Jiang Q C, Wang H Y, Wang Y, et al. Modification of Mg2Si in Mg–Si alloys with yttrium [J]. Mater. Sci. Eng., 2005, 392A: 130
29 Cui Z Q, Tan Y C. Metallurgy and Heat Treatment [M]. 2nd ed. Beijing: China Machine Press, 2011
崔忠圻, 覃耀春. 金属学与热处理2版 [M]. 北京: 机械工业出版社, 2011
30 Zhang E L, Wei X S, Yang L, et al. Effect of Zn on the microstructure and mechanical properties of Mg-Si alloy [J]. Mater. Sci. Eng., 2010, 527A: 3195
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[4] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[5] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[6] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[7] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[8] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[9] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[10] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[11] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[12] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[13] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[14] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[15] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
No Suggested Reading articles found!