Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (3): 206-212    DOI: 10.11901/1005.3093.2021.265
ARTICLES Current Issue | Archive | Adv Search |
Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3
LI Yuanyuan1(), ZENG Hanlu1, PU Hongzheng1, JIANG Mingzhu1, WANG Zhongming1, YANG Yimeng1, GONG Xiangnan2
1.College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
2.Analytical and Testing Center of Chongqing University, Chongqing 401331, China
Cite this article: 

LI Yuanyuan, ZENG Hanlu, PU Hongzheng, JIANG Mingzhu, WANG Zhongming, YANG Yimeng, GONG Xiangnan. Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3. Chinese Journal of Materials Research, 2022, 36(3): 206-212.

Download:  HTML  PDF(5283KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The photocatalytic degradation of tetracycline by Si-doped Li2SnO3 was investigated. The results show that, through iso-electron Si doping the optical absorption band gap of Li2SnO3 may be reduced, while its optical absorption coefficient is increased, in consequence, the photocatalytic degradation efficiency of the Si-doped Li2SnO3 fortetracycline is enhanced. The isoelectronicaly Si-doped Li2SnO3 is a pure and irregular mass solid, and its lattice parameters tend to decrease with the increase of Si doping amount. The photocatalytic performance of the Si-doped Li2SnO3 was significantly improved by Si doping. Under UV irradiation for 25 min, the photocatalytic degradation efficiency of tetracycline by the Si 10%-doped Li2SnO3 is 75.8%, which is about twice as that by the simple Li2SnO3. The photocatalytic degradation behavior of Si-doped Li2SnO3 conforms to the pseudo-first-order kinetic model, and the fitting rate constant is 0.02464 min-1. The Si-O bond formed on the top of the valence band of Si-doped Li2SnO3 reduces the optical absorption band gap and enhances its optical absorption capacity. The photocatalytic degradation mechanism of Si-doped Li2SnO3 is cave-dominated.

Key words:  inorganic non-metallic materials      Si doping      photocatalysis      band gap calculation      tetracycline     
Received:  25 April 2021     
ZTFLH:  O643  
Fund: Chongqing Elite Innovation and Entrepreneurship Demonstration Team(CQYC201903178);Project of Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJQN202001613);Children's Research Institute of National Center for Schooling Development Programme and Chongqing University of Education(CSDP19FS01204);Cultivation for National Science Foundation of Chongqing University of Education(18GZKP01);Scientific research project for college students of Chongqing University of Education(KY20200138)
About author:  LI Yuanyuan, Tel: 15902305519, E-mail: liyy@cque.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.265     OR     https://www.cjmr.org/EN/Y2022/V36/I3/206

Fig.1  XRD patterns of Li2Sn1-x Si x O3(x=0, 0.05, 0.1) (a) and SEM photograph of LSO (b)
SamplesLattice parameters/nmLattice volume/nm3
Li2SnO3a=0.52950b=0.91840c=1.00320V=0.48024
Li2Sn0.95Si0.05O3a=0.53001b=0.91695c=1.00143V=0.47923075
Li2Sn0.90Si0.10O3a=0.53007b=0.91625c=1.00157V=0.47919176
Table 1  Lattice parameters of Li2Sn1-x Si x O3 (x=0,0.05,0.1)
Fig.2  UV-vis diffuse reflectance profiles of LSO and LSSO-10 (a) and relationship between (αhv)2 and hv of LSO and LSSO-10 (b)
Fig.3  Photocatalytic degradation of TC by Li2Sn1-x SiSiO3(x=0,0.05, 0.1) (a), UV absorption spectrum of Li2Sn0.90Si0.10O3 UV photocatalytic degradation of TC (b), First-order kinetic linear fitting of photocatalytic degradation of TC (c) and Kinetic constant fitting of photodegradation of TC (d)
Fig.4  Capture experiment of active free radical in LSSO-10 degradation of TC solution
Fig.5  Energy band structure of Li2SnO3 (a) and Li2Sn0.9375Si0.0625O3 (b)
Fig.6  Projection diagram of orbital energy levels of Li2Sn0.9375Si0.00625O3
Fig.7  Electronic state density of Li2SnO3 (a) and Li2Sn0.9375Si0.0625O3 (b)
Fig.8  Mechanism diagram of photocatalytic degradation of TC by Li2Sn0.90Si0.10O3 photocatalyst under ultraviolet light irradiation
1 Wang H L, Zhang L H, Chen Z G, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances [J]. Chemical Society Reviews, 2014, 43: 5234
2 Philip Jeeva M., Aravind Usha K., Charuvila T. Aravindakumar. Emerging contaminants in Indian environmental matrices-A review [J]. Chemosphere, 2018, 190: 307
3 Ji L L, Chen W, Duan L, et al. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents [J]. Environ. Sci. Technol, 2009, 43: 2322
4 Jin C, Li W, Chen Y S, et al. Efficient photocatalytic degradation and adsorption of tetracycline over type-II heterojunctions consisting of ZnO nanorods and K-doped exfoliated g-C3N4 nano-sheets [J]. Industrial & Engineering Chemistry Research, 2020, 59: 2860
5 Yan X Q, Yuan K, Lu N, et al.. The interplay of sulfur doping and surface hydroxyl in band gap engineering: Mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification [J]. Applied Catalysis B: Environmental, 2017, 218: 20
6 Li Y Y, Diao Y, Wang X Y, et al. Zn4B6O13: Efficient Borate Photocatalyst with Fast Carrier Separation for Photodegradation of Tetracycline [J]. Inorganic Chemistry, 2020, 59: 13136
7 Hu H Y, Lin Y, Hu Y H. Phase role of white TiO2 precursor in its reduction to black TiO2 [J]. Physics Letters A, 2019, 383: 2978
8 Li M, Tu X L, Wang Y H, et al. Highly enhanced visible-light-driven photoelectrochemical performance of ZnO-modified In2S3 nanosheet arrays by atomic layer deposition [J]. Nano-Micro Letters, 2018, 10: 79
9 Huang H W, Li X W, Wang J J, et al. Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO3 2–- doped Bi2O2CO3 [J]. ACS Catalysis, 2015, 5: 4094
10 Zhai H J, Kang J W, Wang R, et al. Study on photocatalytic performance of copper doped titanium dioxide [J]. Journal of Jilin Normal University (Natural Science Edition) 2020, 41: 6
翟宏菊, 康静文, 王 然 等. 铜掺杂二氧化钛光催化性能研究 [J].吉林师范大学学报(自然科学版), 2020, 41: 6
11 Navaratnarajah K, Apostolos K, Alexander C. Li2SnO3 as a cathode material for lithium-ion batteries: defects, lithium ion diffusion and dopants [J]. Scientific Reports, 2018, 8: 12621
12 Giulio F, Claire V, Izabela C, et al. SnO2 model electrode cycled in Li-ion battery reveals the formation of Li2SnO3 and Li8SnO6 phases through conversion reactions [J]. ACS Applied Materials Interfaces, 2018, 10: 8712
13 Miguel G -T, Javier B, David M, et al. Li2SnO3 branched nano- and microstructures with intense and broadband white-light emission [J]. Nano Research, 2019, 12: 441
14 Li Y Y, Wu M J, Yang D F, et al. Novel high efficiency layered oxide photocatalyst Li2SnO3 for rhodamine B and tetracycline degradation [J]. Catalysts, 2019, 9: 712
15 Cao R P, Wang W D, Zhang J L, et al. Synthesis and luminescence properties of Li2SnO3:Mn4+ red-emitting phosphor for solid-state lighting [J]. Journal of Alloys and Compounds, 2017, 704: 124
16 Blöchl P. E.. Projector augmented-wave method [J]. Physical Review B, 1994, 50: 17953
17 John P. P, Kieron B, Matthias E. Generalized gradient approximation made simple [J]. Phys. Rev. Lett, 1996, 77(18): 3865
18 Chadi D.J.. Special points for Brillouin-zone integrations [J]. Physical Review B, 1977, 16(4): 1746
19 Von G. KF.S, R. H. Die Kristallstruktur von Li2SnO3 [J]. Z. Fuer Anorg Und Allg Chem, 1970, 379: 242
20 Jyoti K, Syed M A, Ufana R. Highly efficient photocatalytic degradation of amido black 10B dye using polycarbazole-decorated TiO2 nanohybrids [J]. ACS Omega, 2017, 2: 8354
21 Li Y Y, Tian X F, Wang Y Q, et al. In situ construction of a MgSn(OH)6 perovskite/SnO2 type-II heterojunction: a highly efficient photocatalyst towards photodegradation of tetracycline [J]. Nanomaterials, 2020, 10(1): 53
22 Xue J J, Ma S S, Zhou Y M, et al. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation [J]. ACS Applied Materials Interfaces, 2015, 7: 9630
23 Houlong L Z, Richard G H. Theoretical perspective of photocatalytic properties of single-layer SnS2 [J]. Physical Review B, 2013, 88: 115314
24 Liu G C, Jin Z, Zhang X B, et al. Hydrothermal synthesis and photocatalytic properties of Cu-doped BiVO4 microplates [J]. Journal of Inorganic Materials, 2013, 28(03): 287
刘国聪, 金 真, 张喜斌 等. Cu掺杂BiVO4微米片的水热合成和光催化性能 [J]. 无机材料学报, 2013, 28(03): 287
25 Zhang W H, Ji Q H, Lan H C, et al. Preparation of ZnTiO3-TiO2 composite photocatalyst and mechanism of photocatalytic degradation of organic pollutants [J]. Environmental Science, 40(02): 693
张文海, 吉庆华, 兰华春 等. ZnTiO3-TiO2复合光催化剂的制备及光催化降解有机污染物机制分析 [J].环境科学, 2019, 40(2): 693
26 Niu S Y, Zhang R Y, Zhang Z Y, et al.. In situ construction of the BiOCl/Bi2Ti2O7 heterojunction with enhanced visible-light photocatalytic activity [J]. Inorganic Chemistry Frontiers, 2019, 6: 791
27 Li M Y, Tang Y B, Shi W L, et al. Design of visible-light-response core-shell Fe2O3/CuBi2O4 heterojunctions with enhanced photocatalytic activity towards the degradation of tetracycline: Z-scheme photocatalytic mechanism insight [J]. Inorganic Chemistry Frontiers, 2018, 5: 3148
28 Chen H Y, He F, Zhang X H, et al. Photocatalytic reduction performance of palladium-nitrogen co-doped TiO2 films [J]. Journal of Materials Research, 2017, 31(04): 255
陈海洋, 何 菲, 张旭海 等. 钯氮共掺杂TiO2薄膜的光催化还原性能 [J]. 材料研究学报, 2017, 31(04): 255
29 Chen K S, Li Y, Tian H, et al. Preparation and photocatalytic activity of Bi4Ti3O12/TiO2 heterojunction [J]. Journal of Materials Research, 2014, 28(07): 503
陈侃松, 黎 旸, 田 寒 等. Bi4Ti3O12/TiO2异质结的制备及其光催化性能 [J]. 材料研究学报, 2014, 28(07): 503
30 Cheng T, Dong P Y, Gao X, et al. Preparation of CsTi2NbO7@N-TiO2 hybrid core-shell structure and its visible light catalytic activity [J]. Journal of Materials Research, 2021, 35(03): 221
程 婷, 董鹏玉, 高 欣 等. CsTi2NbO7@N-TiO2杂化核壳结构的制备及其可见光催化性能 [J].材料研究学报, 2021, 35(03): 221
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
No Suggested Reading articles found!