Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (2): 99-106    DOI: 10.11901/1005.3093.2020.492
ARTICLES Current Issue | Archive | Adv Search |
Microstructure Characterization and Tensile Properties of a Ti-bearing Oxide Dispersion Strengthened Steel
XIE Rui1,2(), LV Zheng2, XU Changwei1, WANG Qing1, LIU Chunming2
1.School of Materials Science and Technology, Shenyang Jianzhu University, Shenyang 110168, China
2.School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
Cite this article: 

XIE Rui, LV Zheng, XU Changwei, WANG Qing, LIU Chunming. Microstructure Characterization and Tensile Properties of a Ti-bearing Oxide Dispersion Strengthened Steel. Chinese Journal of Materials Research, 2022, 36(2): 99-106.

Download:  HTML  PDF(2533KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An oxide dispersion strengthened (ODS) steel containing Ti was prepared by powder metallurgy. The grain morphology of the ODS steel was investigated by electron backscatter diffraction (EBSD). The morphology and types of precipitates in the ODS steel were characterized by transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM). The nano size precipitates of the ODS steel was investigated by small angle X-ray scattering (SAXS) technique and X-ray absorption fine structure (XAFS) technique using synchrotron radiation device. And the existence form of Y element in the ODS steel was examined by using XAFS technique. At the same time, the mechanical properties of the ODS steel were measured. The results show that the grains of the ODS steel are equiaxed, and the average grain size is 1.24×10-6 m. The spatial density of the nano-sized precipitates rich in O, Ti and Y of the steel is 1.39×10-24/m3, while the formed Y2Ti2O7 phase presents pyrochlore structure and a small amount of a phase rich in Cr and Mn was observed too. The tensile strength of the ODS steel reaches 1324 MPa at room temperature. With the increase of test temperature, the tensile strength of the material decreases, whereas the elongation increases gradually for the ODS steel.

Key words:  metallic materials      microstructure      synchrotron radiation      oxide dispersion strengthened steel      X-ray absorption fine structure      small-angle x-ray scattering     
Received:  19 November 2020     
ZTFLH:  TB31  
Fund: the Natural Science Foundation Young Scientist Foundation of China(51601031);Liao Ning Revitalization Talents Program(XLYC1902103)
About author:  XIE Rui, Tel: (024)24690310, E-mail: xierui198479@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.492     OR     https://www.cjmr.org/EN/Y2022/V36/I2/99

Fig.1  FRITSCH Pulverisette P 5 ball mill
Fig.2  Synchrotron radiation equipment (a) SAXS equipment, (b) XAFS equipment
Fig.3  EBSD images of ODS steel
Fig.4  TEM images of nano-scale precipitates in ODS steel (a) bright field image, (b) dark field image and (c) SAED pattern
Fig.5  SAXS result of ODS steel sample (a) SAXS curve, (b) nano-scale precipitates distribution curve
SamplesSAXSTEM
D/nmN/m-3Dave/nmN/m-3[23]
Ti content2.231.39×10245.481.33×1023
Table 1  Distribution characteristics of nano-scale oxides calculated from SAXS analyses
Fig.6  Y2Ti2O7 phase in the sample of ODS steel (a) morphology image, (b) fourier transform diffraction pattern and (c) atomic image
Fig.7  Distribution density of Y2Ti2O7 precipitate in ODS steel sample
Fig.8  XAFS result of ODS steel sample
Fig.9  Cr2MnO4 phase in the sample of ODS steel (a) bright field image, (b) dark field image
ElementMass fraction/%Atomic fraction/%
Si K5.8510.57
Ti K1.721.82
Cr K47.4446.36
Mn K21.2319.63
Fe K23.7621.62
Totals100.00
Table 2  EDS result of Cr2MnO4 precipitate
Fig.10  EDS result of Cr2MnO4 precipitate
Fig.11  Tensile strength of ODS steel versus test temperature
1 Stork D , Agostini P , Boutard J L , et al . Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: the EU assessment [J]. J. Nucl. Mater., 2014, 455: 277
2 Odette G R , Alinger M J , Wirth B D . Recent developments in irradiation-resistant steels [J]. Annu. Rev. Mater. Res., 2008, 38: 471
3 Xie R , Lu Z , Lu C Y , et al . Microstructures and mechanical properties of 9Cr oxide dispersion strengthened steel produced by spark plasma sintering [J]. Fusion Eng. Des., 2017, 115: 67
4 Mazumder B , Parish C M , Bei H , et al . The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy [J]. J. Nucl. Mater., 2015, 465: 204
5 Zhang H T , Gorley M J , Chong K B , et al . An in situ powder neutron diffraction study of nano-precipitate formation during processing of oxide-dispersion-strengthened ferritic steels [J]. J. Alloys Compd., 2014, 582: 769
6 Hirata A , Fujita T , Liu C T , et al . Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM [J]. Acta Mater., 2012, 60: 5686
7 Alinger M J , Odette G R , Hoelzer D T . On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys [J]. Acta Mater., 2009, 57: 392
8 Xie R , Lu Z , Lu C Y , et al . Effects of mechanical alloying time on microstructure and properties of 9Cr-ODS steels [J]. J. Nucl. Mater., 2014, 455: 554
9 Chinnappan R . Thermodynamic stability of oxide phases of Fe-Cr based ODS steels via quantum mechanical calculations [J]. Calphad, 2014, 45: 188
10 Toualbi L , Ratti M , André G , et al . Use of neutron and X-ray diffraction to study the precipitation mechanisms of oxides in ODS materials [J]. J. Nucl. Mater., 2011, 417(1-3): 225
11 Ren J , Yu L M , Liu Y C , et al . Corrosion behavior of an Al added high-Cr ODS steel in supercritical water at 600 °C [J]. Appl. Surf. Sci., 2019, 480: 969
12 Xu S , Zhou Z J , Long F , et al . Combination of back stress strengthening and Orowan strengthening in bimodal structured Fe-9Cr-Al ODS steel with high Al addition [J]. Mater. Sci. Eng., 2019, 739A: 45
13 Zhou X S , Ma Z Q , Yu L M , et al . Formation mechanisms of Y-Al-O complex oxides in 9Cr-ODS steels with Al addition [J]. J. Mater. Sci., 2019, 54: 7893
14 Mohan S , Kaur G , Panigrahi B K , et al . Effect of Zr and Al addition on nanocluster formation in oxide dispersion strengthened steel-An ab initio study [J]. J. Alloys Compd., 2018, 767: 122
15 Wu S J , Li J , Li W H , et al . Characterization of oxide dispersoids and mechanical properties of 14Cr-ODS FeCrAl alloys [J]. J. Alloys Compd., 2020, 814, 152282
16 Ukai S , Harada M , Okada H , et al . Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials [J]. J. Nucl. Mater., 1993, 204: 65
17 Higgins M P , Lu C Y , Lu Z , et al . Crossover from disordered to core-shell structures of nano-oxide Y2O3 dispersed particles in Fe [J]. Appl. Phys. Lett., 2016, 109, 031911
18 Lu C Y , Lu Z , Wang X , et al . Enhanced radiation-tolerant oxide dispersion strengthened steel and its microstructure evolution under helium-implantation and heavy-ion irradiation [J]. Sci. Rep., 2017, 7: 40343
19 Li Z Y , Lu Z , Xie R , et al . Effect of spark plasma sintering temperature on microstructure and mechanical properties of 14Cr-ODS ferritic steels [J]. Mater. Sci. Eng., 2016, 660A: 52
20 Olier P , Malaplate J , Mathon M H , et al . Chemical and microstructural evolution on ODS Fe-14CrWTi steel during manufacturing stages [J]. J. Nucl. Mater., 2012, 428: 40
21 Ratti M , Leuvrey D , Mathon M H , et al . Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials [J]. J. Nucl. Mater., 2009, 386-388: 540
22 Ohnuma M , Suzuki J , Ohtsuka S , et al . A new method for the quantitative analysis of the scale and composition of nanosized oxide in 9Cr-ODS steel [J]. Acta Mater., 2009, 57: 5571
23 Lu C Y . Microstructure and irradiation effect of nano-structural oxide dispersion strengthened steels [D]. Shenyang: Northeastern University, 2014
卢晨阳 . 纳米结构氧化物弥散强化钢的微观结构与辐照效应 [D]. 沈阳: 东北大学, 2014
24 Beaucage G . Particle size distributions from small-angle scattering using global scattering functions [J]. Journal of Applied Crystallography, 2004, 37: 523
25 Ilavsky J , Jemian P R . Irena: tool suite for modeling and analysis of small-angle scattering [J]. J. Appl. Crystallogr., 2009, 42: 347
26 Beaucage G . Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension [J]. J. Appl. Crystallogr., 1996, 29: 134
27 Li Y F , Abe H , Li F , et al . Grain structural characterization of 9Cr-ODS steel aged at 973 K up to 10,000 h by electron backscatter diffraction [J]. J. Nucl. Mater., 2014, 455: 568
28 Zilnyk K D , Oliveira V B , Sandim H R Z , et al . Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: a comparative study [J]. J. Nucl. Mater., 2015, 462: 360
29 Lu C Y , Lu Z , Xie R , et al . Effect of Y/Ti atomic ratio on microstructure of oxide dispersion strengthened alloys [J]. Mater. Charact., 2017, 134: 35
30 Murali D , Panigrahi B K , Valsakumar M C , et al . The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nanostructured ferritic alloys: an ab initio study [J]. J. Nucl. Mater., 2010, 403: 113
31 Guinier A , Fournet G , translated by Walker C B . Small-Angle Scattering of X-Rays [M]. New York: John Wiley and Sons Inc., 1955
32 Sakasegawa H , Legendre F , Boulanger L , et al . Stability of non-stoichiometric clusters in the MA957 ODS ferrtic alloy [J]. J. Nucl. Mater., 2011, 417: 229
33 Zhang X W . Effect of Y/Ti atomic ratio on microstructure and mechanical properties of nano-structured 9Cr-ODS steels [D]. Shenyang: Northeastern University, 2014
张小伟 . 不同Y/Ti原子比对纳米结构9Cr-ODS钢微观组织和力学性能的影响 [D]. 沈阳: 东北大学, 2014
34 Zhao Q , Yu L M , Liu Y C , et al . Morphology and structure evolution of Y2O3 nanoparticles in ODS steel powders during mechanical alloying and annealing [J]. Adv. Powder Technol., 2015, 26: 1578
35 Kim J H , Byun T S , Shin E , et al . Small angle neutron scattering analyses and high temperature mechanical properties of nano-structured oxide dispersion-strengthened steels produced via cryomilling [J]. J. Alloys Compd, 2015, 651: 363
36 Chauhan A , Litvinov D , de Carlan Y , et al . Study of the deformation and damage mechanisms of a 9Cr-ODS steel: microstructure evolution and fracture characteristics [J]. Mater. Sci. Eng., 2016, 658A: 123
37 Oksiuta Z , Lewandowska M , Kurzydłowski K J . Mechanical properties and thermal stability of nanostructured ODS RAF steels [J]. Mech. Mater., 2013, 67: 15
38 Li Y P . Investigation on preparation, microstructure and mechanical properties of nano-structured 9Cr-ODS steel [D]. Shenyang: Northeastern University, 2012
李云鹏 . 纳米结构9Cr-ODS钢的制备及其组织与性能的研究 [D]. 沈阳: 东北大学, 2012
39 Schneibel J H , Heilmaier M , Blum W , et al . Temperature dependence of the strength of fine- and ultrafine-grained materials [J]. Acta Mater., 2011, 59(3): 1300
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!