Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (12): 919-925    DOI: 10.11901/1005.3093.2021.395
ARTICLES Current Issue | Archive | Adv Search |
Effect of Heat Treatment on Tensile Property of Ti-6Mo-5V-3Al-2Fe-2Zr Alloy
LIU Zhiduo1, ZHANG Haoyu1(), CHENG Jun2, ZHOU Ge1, ZHANG Xingjun3, CHEN Lijia1
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Northwest Institute for Non-ferrous Metal Research, Shaanxi Key Laboratory of Biomedical Metal Materials, Xi'an 710016, China
3.Liaoning North Precision Equipment Co. Ltd., Shenyang Branch, Shenyang 110020, China
Cite this article: 

LIU Zhiduo, ZHANG Haoyu, CHENG Jun, ZHOU Ge, ZHANG Xingjun, CHEN Lijia. Effect of Heat Treatment on Tensile Property of Ti-6Mo-5V-3Al-2Fe-2Zr Alloy. Chinese Journal of Materials Research, 2022, 36(12): 919-925.

Download:  HTML  PDF(2492KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of three type of heat treatments on the microstructure and tensile properties of a novel metastable β-titanium alloy Ti-6Mo-5V-3Al-2Fe-2Zr was investigated, namely solution and single-stage aging, solution and two-stage aging, as well as solution and furnace cooling. The results show that: compared with the solution and single-stage aging treatment, the strength of the alloy was improved with the decrease of the spacing of secondary α phase precipitated within grains and the increase of its volume fraction by solution and two-stage aging treatment. Continuous α phase formed at grain boundary resulted by the above two heat treatment processes, which leading to poor plasticity of the alloy. Compared with the above two heat treatment processes, the heat treatment of solid solution and furnace cooling could induce obviously the decrease of the spacing of the intracrystalline secondary α phase precipitated, thus increase the amount of αwgb phase formed along the grain boundary and grew into the grain, thereby increase significantly the strength and plasticity of the alloy i.e., the tensile strength of the alloy reaches 1421 MPa, and the fracture elongation is 7.7%. Relative to the volume fraction of the secondary α phase, the spacing is the main factor affecting the strength of the alloy. With the decrease of the spacing of the secondary α phase, the alloy strength increases.

Key words:  metallic materials      metastable β titanium alloy      furnace cooling      secondary α phase      tensile property     
Received:  05 July 2021     
ZTFLH:  TG146.2+3  
Fund: “Jie Bang Gua Shuai” Technological Tacking Project of Liaoning Province(2021JH1/10400069);Liaoning Provincial Department of Education Youth Science and Technology Talents “Seedling” Project(LQGD2020012)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.395     OR     https://www.cjmr.org/EN/Y2022/V36/I12/919

Fig.1  Heat treatment process (a) solution and single-stage aging; (b) solution and two-stage aging; (c) solution and furnace cooling
Fig.2  EBSD image of the alloy before heat treatment
Fig.3  Microstructure of the alloy after different heat treatment (a) HT1, grain boundary; (b) HT1, intragranular; (c) HT2, grain boundary; (d) HT2, intragranular; (e) HT3, grain boundary; (f) HT3, intragranular
Fig.4  EBSD images of the alloy after different heat treatment (a) HT1; (b) HT2; (c) HT3
Heat treatmentφ(αs)/%λ/nm
HT134.888.75
HT240.364.85
HT337.547.15
Table 1  Effect of heat treatment on the volume fraction of αs phase and the average spacing of αi phase
Heat treatmentRp0.2/MPaSt.devRm/MPaSt.devA/%St.devPsp/GPa%
Before HT7849891109.10.228.11
HT11099221196265.10.176.10
HT21256191352214.80.215.68
HT31324131421117.70.1310.94
Table 2  Effect of heat treatment on tensile properties of the alloy
Fig.5  Fracture morphology of tensile specimens after different heat treatment (a) HT1; (b) HT2; (c) HT3

Heat

treatment

Rp0.2,exp

/MPa

Rν+Rss+Rgb

/MPa

Rpcpt,exp

/MPa

HT11099784315
HT21256784472
HT31324784540
Table 3  αs precipitation strength after different heat treatment
Fig.6  Dependence of Rpcpt,exp on φ(αs ) and λ (a) the dependence of Rpcpt,exp on φ(αs ); (b) the dependence of Rpcpt,exp on λ
Fig.7  Dependence of Rp0.2 on λ-1/2 after heat treatment
1 Sun H Y, Zhao J, Liu Y A, et al. Effect of C addition on microstructure and mechanical properties of Ti-V-Cr burn resistant titanium alloys [J]. Chin. J. Mater. Res., 2019, 33: 537
doi: 10.11901/1005.3093.2019.090
孙欢迎, 赵 军, 刘翊安 等. C含量对Ti-V-Cr系阻燃钛合金微观组织和力学性能的影响 [J]. 材料研究学报, 2019, 33: 537
doi: 10.11901/1005.3093.2019.090
2 Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
3 Qin Q H, Peng H B, Fan Q C, et al. Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys [J]. J. Alloys Compd., 2018, 739: 873
doi: 10.1016/j.jallcom.2017.12.128
4 Ouyang D L, Lu S Q, Cui X, et al. Kinetics of dynamic recrystallization of TB6 Ti-alloy during hot compressive deformation at temperatures of β-phase range [J]. Chin. J. Mater. Res., 2019, 33: 918
欧阳德来, 鲁世强, 崔 霞 等. TB6钛合金β区变形的动态再结晶动力学 [J]. 材料研究学报, 2019, 33: 918
5 Liu Y Y, Zhang L, Shi X N, et al. High cycle fatigue properties and fracture behavior of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy [J]. Rare Met. Mater. Eng., 2018, 47: 3666
doi: 10.1016/S1875-5372(19)30015-3
6 Wang X M, Zhang S Q, Yuan Z Y, et al. Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy [J]. Chin. J. Mater. Res., 2017, 31: 409
doi: 10.11901/1005.3093.2016.267
王雪萌, 张思倩, 袁子尧 等. 时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响 [J]. 材料研究学报, 2017, 31: 409
doi: 10.11901/1005.3093.2016.267
7 Wang X Y, Yang J R, Zhang K R, et al. Atomic-scale observations of B2→ω-related phases transition in high-Nb containing TiAl alloy [J]. Mater. Charact., 2017, 130: 135
doi: 10.1016/j.matchar.2017.06.003
8 Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
9 Wang P Y, Zhang H Y, Zhang Z P, et al. Effect of solution temperature on microstructure and tensile properties of metastable β-Ti alloy Ti-4Mo-6Cr-3Al-2Sn [J]. Chin. J. Mater. Res., 2020, 34: 473
王鹏宇, 张浩宇, 张志鹏 等. 固溶温度对亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn的组织和拉伸性能的影响 [J]. 材料研究学报, 2020, 34: 473
10 Fan J K, Li J S, Kou H C, et al. Microstructure and mechanical property correlation and property optimization of a near β titanium alloy Ti-7333 [J]. J. Alloys Compd., 2016, 682: 517
doi: 10.1016/j.jallcom.2016.04.303
11 Li C L, Mi X J, Ye W J, et al. Microstructural evolution and age hardening behavior of a new metastable beta Ti-2Al-9.2Mo-2Fe alloy [J]. Mat. Sci. Eng., 2015, 645A: 225
12 Zheng Y F, Williams R E A, Sosa J M, et al. The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-Titanium alloys [J]. Acta Mater., 2016, 103: 165
doi: 10.1016/j.actamat.2015.09.053
13 Ma Q, Cao D. Effect of double aging treatment on microstructure and mechanical property of TB8 titanium alloy [J]. Trans. Mater. Heat Treat., 2017, 38(10): 41
马 权, 曹 迪. 双级时效处理对TB8合金组织和性能的影响 [J]. 材料热处理学报, 2017, 38(10): 41
14 Zhou W, Ge P, Zhao Y Q, et al. Evolution of primary α phase morphology and mechanical properties of a novel high-strength titanium alloy during heat treatment [J]. Rare Met. Mater. Eng., 2017, 46: 2852
doi: 10.1016/S1875-5372(18)30019-5
15 Sun S Y, Deng C. Accurate calculation of α+β/β phase transition of titanium alloys based on binary phase diagrams [J]. Titanium Industry Progress, 2011, 28(3): 21
孙书英, 邓 超. 基于二元相图精确计算钛合金α+β/β相变点 [J]. 钛工业进展, 2011, 28(3): 21
16 Xu Y F, Wen J, Xiao Y F, et al. Effects of duplex aging on microstructure and mechanical properties of Ti-25Nb-10Ta-1Zr-0.2Fe alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 1912
doi: 10.1016/S1003-6326(16)64307-8
许艳飞, 文 璟, 肖逸锋 等. 双级时效对Ti-25Nb-10Ta-1Zr-0. 2Fe医用β钛合金显微组织与力学性能的影响 [J]. 中国有色金属学报, 2016, 26: 1912
17 Wen J H, Ge P, Yang G J, et al. Effect of heat treatment process on microstructure and tensile properties of Ti-1300 alloy [J]. Rare Met. Mater. Eng., 2009, 38: 1490
汶建宏, 葛 鹏, 杨冠军 等. 热处理工艺对Ti-1300合金的组织和拉伸性能的影响 [J]. 稀有金属材料与工程, 2009, 38: 1490
18 Zheng Y F, Williams R E A, Wang D, et al. Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys [J]. Acta Mater., 2016, 103: 850
doi: 10.1016/j.actamat.2015.11.020
19 Li P, Yuan B G, Xue K M, et al. Microstructure and properties of hydrogenated TB8 alloy [J]. Rare Met., 2017, 36: 242
doi: 10.1007/s12598-014-0260-0
20 Li T, Kent D, Sha G, et al. The role of ω in the precipitation of α in near-β Ti alloys [J]. Scr. Mater., 2016, 117: 92
doi: 10.1016/j.scriptamat.2016.02.026
21 Zhang H Y, Wang C, Zhang S Q, et al. Evolution of secondary α phase during aging treatment in novel near β Ti-6Mo-5V-3Al-2Fe alloy [J]. Materials (Basel), 2018, 11: 2283
doi: 10.3390/ma11112283
22 He T, Feng Y, Liu X H, et al. Microstructure evolution of ω and α phase of β-CEZ alloy during the solution treatment and aging process [J]. Rare Met. Mater. Eng., 2018, 47: 2711
何 涛, 冯 勇, 刘向宏 等. β-CEZ钛合金在固溶时效时ω相与α相的组织演化规律 [J]. 稀有金属材料与工程, 2018, 47: 2711
23 Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
24 Ren L, Xiao W L, Chang H, et al. Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment [J]. Mater. Sci. Eng., 2018, 711A: 553
25 Shang G Q, Kou F C, Fei Y, et al. Influence of aging processing on microstructure and mechanical properties of Ti-10V-2Fe-3Al alloy [J]. Rare Met. Mater. Eng., 2010, 39: 1061
商国强, 寇宏超, 费 跃 等. 时效工艺对Ti-10V-2Fe-3Al合金显微组织和力学性能的影响 [J]. 稀有金属材料与工程, 2010, 39: 1061
26 Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength [J]. Scripta Mater., 154: 139
27 Kar S K, Suman S, Shivaprasad S, et al. Processing-microstructure-yield strength correlation in a near β Ti alloy, Ti-5Al-5Mo-5V-3Cr [J]. Mater. Sci. Eng., 2014, 610A: 171
28 Shekhar S, Sarkar R, Kar S K, et al. Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy, Ti-5Al-5V-5Mo-3Cr [J]. Mater. Des., 2015, 66: 596
doi: 10.1016/j.matdes.2014.04.015
29 Zhu W G, Lei J, Zhang Z X, et al. Microstructural dependence of strength and ductility in a novel high strength β titanium alloy with Bi-modal structure [J]. Mater. Sci. Eng., 2019, 762A: 138086
30 Du Z X, Xiao S L, Xu L J, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy [J]. Mater. Des., 2014, 55: 183
doi: 10.1016/j.matdes.2013.09.070
31 Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
doi: 10.1016/j.jmst.2018.04.002
32 Li C, Zhang X Y, Li Z Y, et al. Effect of heat treatment on microstructure and mechanical properties of ultra-fine grained Ti-55511 near β titanium alloy [J]. Rare Met. Mater. Eng., 2015, 44: 327
doi: 10.1016/S1875-5372(15)30029-1
33 Sasaki L, Hénaff G, Arzaghi M, et al. Effect of long term aging on the fatigue crack propagation in the β titanium alloy Ti 17 [J]. Mat. Sci. Eng., 2017, 707A: 253
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!