Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (12): 907-918    DOI: 10.11901/1005.3093.2021.505
ARTICLES Current Issue | Archive | Adv Search |
High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel
CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu(), HUANG Zhenyi()
School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China
Cite this article: 

CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu, HUANG Zhenyi. High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel. Chinese Journal of Materials Research, 2022, 36(12): 907-918.

Download:  HTML  PDF(6741KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The deformation characteristics of 9Mn27Al10Ni3Si low density steel at 850~1050℃ with strain rate within the range of 0.01~5 s-1 were investigated by using Gleeble thermal simulator, XRD, OM, SEM and TEM. The results show that when the steel is hot compressed at 850~950℃ with low strain rate (0.01~1 s-1), the flow stress of the steel increases obviously as the strain reaches a certain critical value, which may be due to the precipitation and coarsening of κ-carbides, and the increase of friction coefficient of the steel during hot compression. With the increase of strain rate, the number of twins increases significantly, which can speed up the process of dynamic recrystallization of austenite, however, during thermal compression by high strain rate, the dynamic recrystallization process is more significant rather than by low strain rate. Due to the softening effect of recrystallization, the abnormal rise of flow stress gradually weakens or even disappears.

Key words:  metallic materials      low-density steel      dynamic recrystallization      deformation mechanism      twin      κ-carbides     
Received:  07 September 2021     
ZTFLH:  TG111.7  
Fund: University Science Research Project of Anhui Province(KJ2019ZD07)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.505     OR     https://www.cjmr.org/EN/Y2022/V36/I12/907

Fig.1  Microstructure morphology of experimental steel in forging state (a) forged microstructure, (b) distribution of austen-ite grain size, (c) analysis results of XRD, (d) phase equilibrium diagram
Phaseγδκ-carbides
Content80.53.715.8
Table 1  Phase composition characteristics of austenite based low density steel at room temperature of 9Mn27Al10Ni3Si (atomic fraction, %)
Fig.2  Hot compression flow stress curve of experimental steel
Fig.3  Correction of hot compression rheological stress curve of experimental steel under the condition of 0.01 s-1 (a) before and after friction correction, (b) before and after temperature correction (imaginary point line is the corrected curve)
Fig.4  Microstructure morphologies after hot compression of experimental steel under the condition of different strain rates at 850℃ (DRX: dynamic recrystallization) (a) 0.01 s-1 (ε=0.9), (b) 0.1 s-1 (ε=0.9), (c) 1 s-1 (ε=0.9), (d) 5 s-1 (ε=0.67)
Fig.5  SEM image after hot compression of experimental steel under the condition of 850℃ and (a) 0.01 s-1 (ε=0.9), (b) 0.1 s-1 (ε=0.67)
Fig.6  Metallographic structure of experimental steel after hot compression under the condition of 0.01 s-1 and (a) 900℃, (b) 950℃, (c) 1000℃, (d) 1050℃
Fig.7  θ-σ and (-dθ/dσ)-σ curve of experimental steel after hot compression under the condition of 850℃ and 1~5 s-1
Fig.8  TEM microstructure after hot compression of experimental steel at 850℃ and (a~c) 0.01 s-1 (ε=0.9), (d~f) 5 s-1 (ε=0.67)
ElementPoint 1Point 2Point 3Point 4Point 5Point 6
Fe65.11664.41663.05754.59953.36054.067
Mn17.91726.35825.77629.34830.95130.342
Al10.0566.4227.09015.38615.11014.937
Ni5.0181.8842.3880.4570.4920.484
Si1.8910.9181.6870.2080.0860.167
Phaseγγγκ-carbideκ-carbideκ-carbide
Table 2  EDS analysis of TEM images in Fig.6 and Fig.7
Fig.9  TEM microstructure after hot compression of experimental steel under the conditions of 850℃ and 0.01 s-1 (ε=0.9) (a, b) intergranular κ-carbides, (c) intracrystalline κ-carbides, (d) deformation band
Strain rate/s-10.010.115
Average grain size/μm10.289.669.0012.13
Time of hot compression/s90910.3
Table 3  Average austenite recrystallization grain size of ex-perimental steel during hot compression at 850℃
Fig.10  TEM microstructure after hot compression of experimental steel under the conditions of 1050℃ and 5 s-1 (ε=0.7) (a) deformation band and substructure, (b) cellular substructure and dislocation tangle
Fig.11  Schematic diagram of first principle research (a) and effect of κ-carbides on abnormal rise of flow stress (b)
1 Suh D W, Kim N J. Low-density steels [J]. Scr. Mater., 2013, 68(6): 337
doi: 10.1016/j.scriptamat.2012.11.037
2 Kim H, Suh D W, Kim N J. Fe-Al-Mn-C lightweight structural alloys: a review on the microstructures and mechanical properties [J]. Sci. Technol. Adv. Mater., 2013, 14(1): 014205
3 Rana R. Low-density steels [J]. JOM, 2014, 66(9): 1730
doi: 10.1007/s11837-014-1137-2
4 Liu C Q, Peng Q C, Xue Z L, et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel [J]. Mater. Rev., 2019, 33B(15) : 2572
刘春泉, 彭其春, 薛正良 等. Fe-Mn-Al-C系列低密度高强钢的研究现状 [J]. 材料导报, 2019, 33B(15) : 2572
5 Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
doi: 10.1016/j.pmatsci.2017.05.002
6 Sun B H, Aydin H, Fazeli F, et al. Microstructure evolution of a medium manganese steel during thermomechanical processing [J]. Metall. Mater. Trans., 2016, 47A(4) : 1782
7 Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C Steel [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29(5): 441
doi: 10.1007/s40195-016-0406-1
8 Wu Z Q, Tang Y B, Chen W, et al. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map [J]. Vacuum, 2019, 159: 447
doi: 10.1016/j.vacuum.2018.10.079
9 Abedi H R, Hanzaki A Z, Liu Z, et al. Continuous dynamic recrystallization in low density steel [J]. Mater. Des., 2017, 114: 55
doi: 10.1016/j.matdes.2016.10.044
10 Kalantari A R, Zarei-Hanzaki A, Abedi H R, et al. Microstructure evolution and room temperature mechanical properties of a thermomechanically processed ferrite-based low density steel [J]. Mater. Sci. Eng., 2019, 754A: 57
11 Mozumder Y H, Babu K A, Saha R, et al. Deformation mechanism and nano-scale interplay of dual precipitation during compressive deformation of a duplex lightweight steel at high strain rate [J]. Mater. Sci. Eng., 2021, 823A: 141725
12 Babu K A, Mozumder Y H, Saha R, et al. Hot-workability of super-304H exhibiting continuous to discontinuous dynamic recrystallization transition [J]. Mater. Sci. Eng., 2018, 734A: 269
13 Li Y P, Onodera E, Matsumoto H, et al. Correcting the stress-strain curve in hot compression process to high strain level [J]. Metall. Mater. Trans., 2009, 40A(4) : 982
14 Rasti J, Najafizadeh A, Meratian M. Correcting the stress-strain curve in hot compression test using finite element analysis and Taguchi method [J]. Int. J. ISSI, 2011, 8: 26
15 Mozumder Y H, Babu K A, Saha R, et al. Dynamic microstructural evolution and recrystallization mechanism during hot deformation of intermetallic-hardened duplex lightweight steel [J]. Mater. Sci. Eng., 2020, 788A: 139613
16 Liu D G, Ding H, Hu X, et al. Dynamic recrystallization and precipitation behaviors during hot deformation of a κ-carbide-bearing multiphase Fe-11Mn-10Al-0.9C lightweight steel [J]. Mater. Sci. Eng., 2020, 772A: 138682
17 Zambrano O A, Valdés J, Aguilar Y, et al. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation [J]. Mater. Sci. Eng., 2017, 689A: 269
18 Eskandari M, Zarei-Hanzaki A, Kamali A R, et al. Strain hardening during hot compression through planar dislocation and twin-like structure in a low-density high-Mn steel [J]. J. Mater. Eng. Perform., 2014, 23(10): 3567
doi: 10.1007/s11665-014-1168-4
19 Kim C W, Terner M, Lee J H, et al. Partitioning of C into κ-carbides by Si addition and its effect on the initial deformation mechanism of Fe-Mn-Al-C lightweight steels [J]. J. Alloys Compd., 2019, 775: 554
doi: 10.1016/j.jallcom.2018.10.104
20 Acselrad O, Simao R A, Pereira L C, et al. Phase transformations in FeMnAlC austenitic steels with Si addition [J]. Metall. Mater. Trans., 2002, 33A(11) : 3569
21 Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518(7537): 77
doi: 10.1038/nature14144
22 Sohn S S, Song H, Suh B C, et al. Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization [J]. Acta Mater., 2015, 96: 301
doi: 10.1016/j.actamat.2015.06.024
23 Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63(10): 1028
doi: 10.1016/j.scriptamat.2010.07.036
24 Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Mater. Des., 2016, 111: 548
doi: 10.1016/j.matdes.2016.09.012
25 Sang D L, Fu R D, Li Y J, et al. Interactions between twins and dislocations during dynamic microstructure evolution for hot shear-compression deformation of Fe-38Mn austenitic steel [J]. J. Alloys Compd., 2018, 735: 2395
doi: 10.1016/j.jallcom.2017.11.303
26 Wang X Y, Wang D K, Jin J S, et al. Effects of strain rates and twins evolution on dynamic recrystallization mechanisms of austenite stainless steel [J]. Mater. Sci. Eng., 2019, 761A: 138044
27 Mandal S, Bhaduri A K, Sarma V S. Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel [J]. Metall. Mater. Trans., 2012, 43A(6) : 2056
28 Bartlett L, Van Aken D. High manganese and aluminum steels for the military and transportation industry [J]. JOM, 2014, 66(9): 1770
doi: 10.1007/s11837-014-1068-y
29 Mohamadizadeh A, Zarei-Hanzaki A, Abedi H R, et al. Hot deformation characterization of duplex low-density steel through 3D processing map development [J]. Mater. Charact., 2015, 107: 293
doi: 10.1016/j.matchar.2015.07.028
30 Song R B, Li J J, Li X, et al. Hot deformation behavior of Fe-8Mn-3Al-0.2C steel [J]. Mater. Sci. Technol., 2018, 26(1): 81
doi: 10.1179/174328408X388103
宋仁伯, 李佳佳, 李 轩 等. Fe-8Mn-3Al-0.2C轻质高强钢的热变形行为 [J]. 材料科学与工艺, 2018, 26(1): 81
31 Li C M, Huang L, Zhao M J, et al. Influence of hot deformation on dynamic recrystallization behavior of 300M steel: Rules and modeling [J]. Mater. Sci. Eng., 2020, 797A: 139925
32 Momeni A, Dehghani K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps [J]. Mater. Sci. Eng., 2010, 527A(21-22) : 5467
33 Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming [J]. J. Mater. Process. Technol., 2004, 152: 136
doi: 10.1016/j.jmatprotec.2004.03.029
34 Devadas C, Baragar D, Ruddle G, et al. The thermal and metallurgical state of steel strip during hot rolling: Part II. Factors influencing rolling loads [J]. Metall. Trans., 1991, 22A: 321
35 Zhang X F, Yang H, Li J X, et al. The stacking fault energy (SFE) calculation model for Fe-Mn-Al-C low-density steels based on thermodynamics theory [J]. Mater. Rev., 2018, 32B(16) : 2859
章小峰, 杨 浩, 李家星 等. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型 [J]. 材料导报, 2018, 32B(16) : 2859
36 Li Z Q, Wang J S, Huang H B. Influences of grain/particle interfacial energies on second-phase particle pinning grain coarsening of polycrystalline [J]. J. Alloys Compd., 2020, 818: 152848
doi: 10.1016/j.jallcom.2019.152848
37 Perumal R, Selzer M, Nestler B. Concurrent grain growth and coarsening of two-phase microstructures; large scale phase-field study [J]. Comput. Mater. Sci., 2019, 159: 160
doi: 10.1016/j.commatsci.2018.12.017
38 Lu W J, Qin R S. Influence of κ-carbide interface structure on the formability of lightweight steels [J]. Mater. Des., 2016, 104: 211
doi: 10.1016/j.matdes.2016.05.021
39 Zhang X F, Leng D P, Zhang L, et al. Influence of aluminum content on stacking fault energy and mechanical twin of low-density Fe-Mn-Al-C steels [J]. Trans. Mater. Heat Treat., 2015, 36(12): 128
章小峰, 冷德平, 张 龙 等. Al含量对Fe-Mn-Al-C系低密度钢层错能及形变孪晶的影响 [J]. 材料热处理学报, 2015, 36(12): 128
40 Dehghan-Manshadi A, Barnett M R, Hodgson P D. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation [J]. Mater. Sci. Eng., 2008, 485A(1-2) : 664
41 Najafi S Z, Momeni A, Jafarian H R, et al. Recrystallization, precipitation and flow behavior of D3 tool steel under hot working condition [J]. Mater. Charact., 2017, 132: 437
doi: 10.1016/j.matchar.2017.09.009
42 Sato K, Tagawa K, Inoue Y. Spinodal decomposition and mechanical properties of an austenitic Fe-30%Mn-9wt.%Al-0.9%C alloy [J]. Mater. Sci. Eng., 1989, 111A: 45
43 Zhang X F, Yang H, Li J X, et al. The stacking fault energy (SFE) calculation model for Fe-Mn-Al-C low-density steels based on thermodynamics theory [J]. Mater. Rev., 2018, 32B(16) : 2859
章小峰, 杨 浩, 李家星 等. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型 [J]. 材料导报, 2018, 32B(16) : 2859
44 He B B, Hu B, Yen H W, et al. High dislocation density–induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357(6355): 1029
doi: 10.1126/science.aan0177 pmid: 28839008
45 Han Y H, Li C S, Ren J Y, et al. Dynamic recrystallization behavior during hot deformation of as-cast 4Cr5MoSiV1 steel [J]. J. Mater. Sci., 2021, 56(14): 8762
doi: 10.1007/s10853-021-05792-7
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!