|
|
High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel |
CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu( ), HUANG Zhenyi( ) |
School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China |
|
Cite this article:
CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu, HUANG Zhenyi. High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel. Chinese Journal of Materials Research, 2022, 36(12): 907-918.
|
Abstract The deformation characteristics of 9Mn27Al10Ni3Si low density steel at 850~1050℃ with strain rate within the range of 0.01~5 s-1 were investigated by using Gleeble thermal simulator, XRD, OM, SEM and TEM. The results show that when the steel is hot compressed at 850~950℃ with low strain rate (0.01~1 s-1), the flow stress of the steel increases obviously as the strain reaches a certain critical value, which may be due to the precipitation and coarsening of κ-carbides, and the increase of friction coefficient of the steel during hot compression. With the increase of strain rate, the number of twins increases significantly, which can speed up the process of dynamic recrystallization of austenite, however, during thermal compression by high strain rate, the dynamic recrystallization process is more significant rather than by low strain rate. Due to the softening effect of recrystallization, the abnormal rise of flow stress gradually weakens or even disappears.
|
Received: 07 September 2021
|
|
Fund: University Science Research Project of Anhui Province(KJ2019ZD07) |
1 |
Suh D W, Kim N J. Low-density steels [J]. Scr. Mater., 2013, 68(6): 337
doi: 10.1016/j.scriptamat.2012.11.037
|
2 |
Kim H, Suh D W, Kim N J. Fe-Al-Mn-C lightweight structural alloys: a review on the microstructures and mechanical properties [J]. Sci. Technol. Adv. Mater., 2013, 14(1): 014205
|
3 |
Rana R. Low-density steels [J]. JOM, 2014, 66(9): 1730
doi: 10.1007/s11837-014-1137-2
|
4 |
Liu C Q, Peng Q C, Xue Z L, et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel [J]. Mater. Rev., 2019, 33B(15) : 2572
|
|
刘春泉, 彭其春, 薛正良 等. Fe-Mn-Al-C系列低密度高强钢的研究现状 [J]. 材料导报, 2019, 33B(15) : 2572
|
5 |
Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
doi: 10.1016/j.pmatsci.2017.05.002
|
6 |
Sun B H, Aydin H, Fazeli F, et al. Microstructure evolution of a medium manganese steel during thermomechanical processing [J]. Metall. Mater. Trans., 2016, 47A(4) : 1782
|
7 |
Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C Steel [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29(5): 441
doi: 10.1007/s40195-016-0406-1
|
8 |
Wu Z Q, Tang Y B, Chen W, et al. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map [J]. Vacuum, 2019, 159: 447
doi: 10.1016/j.vacuum.2018.10.079
|
9 |
Abedi H R, Hanzaki A Z, Liu Z, et al. Continuous dynamic recrystallization in low density steel [J]. Mater. Des., 2017, 114: 55
doi: 10.1016/j.matdes.2016.10.044
|
10 |
Kalantari A R, Zarei-Hanzaki A, Abedi H R, et al. Microstructure evolution and room temperature mechanical properties of a thermomechanically processed ferrite-based low density steel [J]. Mater. Sci. Eng., 2019, 754A: 57
|
11 |
Mozumder Y H, Babu K A, Saha R, et al. Deformation mechanism and nano-scale interplay of dual precipitation during compressive deformation of a duplex lightweight steel at high strain rate [J]. Mater. Sci. Eng., 2021, 823A: 141725
|
12 |
Babu K A, Mozumder Y H, Saha R, et al. Hot-workability of super-304H exhibiting continuous to discontinuous dynamic recrystallization transition [J]. Mater. Sci. Eng., 2018, 734A: 269
|
13 |
Li Y P, Onodera E, Matsumoto H, et al. Correcting the stress-strain curve in hot compression process to high strain level [J]. Metall. Mater. Trans., 2009, 40A(4) : 982
|
14 |
Rasti J, Najafizadeh A, Meratian M. Correcting the stress-strain curve in hot compression test using finite element analysis and Taguchi method [J]. Int. J. ISSI, 2011, 8: 26
|
15 |
Mozumder Y H, Babu K A, Saha R, et al. Dynamic microstructural evolution and recrystallization mechanism during hot deformation of intermetallic-hardened duplex lightweight steel [J]. Mater. Sci. Eng., 2020, 788A: 139613
|
16 |
Liu D G, Ding H, Hu X, et al. Dynamic recrystallization and precipitation behaviors during hot deformation of a κ-carbide-bearing multiphase Fe-11Mn-10Al-0.9C lightweight steel [J]. Mater. Sci. Eng., 2020, 772A: 138682
|
17 |
Zambrano O A, Valdés J, Aguilar Y, et al. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation [J]. Mater. Sci. Eng., 2017, 689A: 269
|
18 |
Eskandari M, Zarei-Hanzaki A, Kamali A R, et al. Strain hardening during hot compression through planar dislocation and twin-like structure in a low-density high-Mn steel [J]. J. Mater. Eng. Perform., 2014, 23(10): 3567
doi: 10.1007/s11665-014-1168-4
|
19 |
Kim C W, Terner M, Lee J H, et al. Partitioning of C into κ-carbides by Si addition and its effect on the initial deformation mechanism of Fe-Mn-Al-C lightweight steels [J]. J. Alloys Compd., 2019, 775: 554
doi: 10.1016/j.jallcom.2018.10.104
|
20 |
Acselrad O, Simao R A, Pereira L C, et al. Phase transformations in FeMnAlC austenitic steels with Si addition [J]. Metall. Mater. Trans., 2002, 33A(11) : 3569
|
21 |
Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518(7537): 77
doi: 10.1038/nature14144
|
22 |
Sohn S S, Song H, Suh B C, et al. Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization [J]. Acta Mater., 2015, 96: 301
doi: 10.1016/j.actamat.2015.06.024
|
23 |
Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63(10): 1028
doi: 10.1016/j.scriptamat.2010.07.036
|
24 |
Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Mater. Des., 2016, 111: 548
doi: 10.1016/j.matdes.2016.09.012
|
25 |
Sang D L, Fu R D, Li Y J, et al. Interactions between twins and dislocations during dynamic microstructure evolution for hot shear-compression deformation of Fe-38Mn austenitic steel [J]. J. Alloys Compd., 2018, 735: 2395
doi: 10.1016/j.jallcom.2017.11.303
|
26 |
Wang X Y, Wang D K, Jin J S, et al. Effects of strain rates and twins evolution on dynamic recrystallization mechanisms of austenite stainless steel [J]. Mater. Sci. Eng., 2019, 761A: 138044
|
27 |
Mandal S, Bhaduri A K, Sarma V S. Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel [J]. Metall. Mater. Trans., 2012, 43A(6) : 2056
|
28 |
Bartlett L, Van Aken D. High manganese and aluminum steels for the military and transportation industry [J]. JOM, 2014, 66(9): 1770
doi: 10.1007/s11837-014-1068-y
|
29 |
Mohamadizadeh A, Zarei-Hanzaki A, Abedi H R, et al. Hot deformation characterization of duplex low-density steel through 3D processing map development [J]. Mater. Charact., 2015, 107: 293
doi: 10.1016/j.matchar.2015.07.028
|
30 |
Song R B, Li J J, Li X, et al. Hot deformation behavior of Fe-8Mn-3Al-0.2C steel [J]. Mater. Sci. Technol., 2018, 26(1): 81
doi: 10.1179/174328408X388103
|
|
宋仁伯, 李佳佳, 李 轩 等. Fe-8Mn-3Al-0.2C轻质高强钢的热变形行为 [J]. 材料科学与工艺, 2018, 26(1): 81
|
31 |
Li C M, Huang L, Zhao M J, et al. Influence of hot deformation on dynamic recrystallization behavior of 300M steel: Rules and modeling [J]. Mater. Sci. Eng., 2020, 797A: 139925
|
32 |
Momeni A, Dehghani K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps [J]. Mater. Sci. Eng., 2010, 527A(21-22) : 5467
|
33 |
Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming [J]. J. Mater. Process. Technol., 2004, 152: 136
doi: 10.1016/j.jmatprotec.2004.03.029
|
34 |
Devadas C, Baragar D, Ruddle G, et al. The thermal and metallurgical state of steel strip during hot rolling: Part II. Factors influencing rolling loads [J]. Metall. Trans., 1991, 22A: 321
|
35 |
Zhang X F, Yang H, Li J X, et al. The stacking fault energy (SFE) calculation model for Fe-Mn-Al-C low-density steels based on thermodynamics theory [J]. Mater. Rev., 2018, 32B(16) : 2859
|
|
章小峰, 杨 浩, 李家星 等. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型 [J]. 材料导报, 2018, 32B(16) : 2859
|
36 |
Li Z Q, Wang J S, Huang H B. Influences of grain/particle interfacial energies on second-phase particle pinning grain coarsening of polycrystalline [J]. J. Alloys Compd., 2020, 818: 152848
doi: 10.1016/j.jallcom.2019.152848
|
37 |
Perumal R, Selzer M, Nestler B. Concurrent grain growth and coarsening of two-phase microstructures; large scale phase-field study [J]. Comput. Mater. Sci., 2019, 159: 160
doi: 10.1016/j.commatsci.2018.12.017
|
38 |
Lu W J, Qin R S. Influence of κ-carbide interface structure on the formability of lightweight steels [J]. Mater. Des., 2016, 104: 211
doi: 10.1016/j.matdes.2016.05.021
|
39 |
Zhang X F, Leng D P, Zhang L, et al. Influence of aluminum content on stacking fault energy and mechanical twin of low-density Fe-Mn-Al-C steels [J]. Trans. Mater. Heat Treat., 2015, 36(12): 128
|
|
章小峰, 冷德平, 张 龙 等. Al含量对Fe-Mn-Al-C系低密度钢层错能及形变孪晶的影响 [J]. 材料热处理学报, 2015, 36(12): 128
|
40 |
Dehghan-Manshadi A, Barnett M R, Hodgson P D. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation [J]. Mater. Sci. Eng., 2008, 485A(1-2) : 664
|
41 |
Najafi S Z, Momeni A, Jafarian H R, et al. Recrystallization, precipitation and flow behavior of D3 tool steel under hot working condition [J]. Mater. Charact., 2017, 132: 437
doi: 10.1016/j.matchar.2017.09.009
|
42 |
Sato K, Tagawa K, Inoue Y. Spinodal decomposition and mechanical properties of an austenitic Fe-30%Mn-9wt.%Al-0.9%C alloy [J]. Mater. Sci. Eng., 1989, 111A: 45
|
43 |
Zhang X F, Yang H, Li J X, et al. The stacking fault energy (SFE) calculation model for Fe-Mn-Al-C low-density steels based on thermodynamics theory [J]. Mater. Rev., 2018, 32B(16) : 2859
|
|
章小峰, 杨 浩, 李家星 等. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型 [J]. 材料导报, 2018, 32B(16) : 2859
|
44 |
He B B, Hu B, Yen H W, et al. High dislocation density–induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357(6355): 1029
doi: 10.1126/science.aan0177
pmid: 28839008
|
45 |
Han Y H, Li C S, Ren J Y, et al. Dynamic recrystallization behavior during hot deformation of as-cast 4Cr5MoSiV1 steel [J]. J. Mater. Sci., 2021, 56(14): 8762
doi: 10.1007/s10853-021-05792-7
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|