|
|
Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites |
ZONG Yixun, LI Shufeng( ), LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu |
School of Materials Science and Engineering, Xi´an University of Technology, Xi´an 710048, China |
|
Cite this article:
ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites. Chinese Journal of Materials Research, 2022, 36(10): 777-785.
|
Abstract Graphene nanosheets (GNP) reinforced Cu-based composites GNP-Cu and GNP-Ni/Cu were prepared via a three-step process, i.e. wet mixing powders of Cu, Ni and GNP, then spark plasma sintering and finally hot extrusion. The phase composition, microstructure, density, electrical conductivity, and mechanical properties of GNP-Ni/Cu composites were characterized, and the mechanism of GNP and Ni strengthening GNP-Ni /Cu composites was also investigated. The results show that the microhardness and yield strength of GNP-Ni/Cu composite with 0.2% GNP and 1.5% Ni (in mass fraction) are 38% and 50% higher than those of simple Cu, and 14.0% and 11.6% higher than those of 0.2GNP/Cu composite, respectively. These results indicate that the interface bonding between GNP and Cu was improved by Ni addition, and the mechanical properties of GNP-Ni/Cu composites were significantly improved. The load transfer strengthening and thermal mismatch strengthening of GNP and the Ni solution strengthening are the main causes for the improvement of mechanical properties of materials.
|
Received: 24 August 2021
|
|
Fund: National Natural Science Foundation of China(51871180) |
About author: LI Shufeng, Tel: 15529661629, E-mail: shufengli@xaut.edu.cn
|
1 |
Zeng Z M. Practical Metal Material Selection Manual [M]. Beijing: China Machine Press, 2012
|
|
曾正明. 实用金属材料选用手册 [M]. 北京: 机械工业出版社, 2012
|
2 |
Liu P, Ren F Z, Jia S G. Copper Alloys and Their Applications [M]. Beijing: Chemical Industry Press, 2007
|
|
刘 平, 任凤章, 贾淑果. 铜合金及其应用 [M]. 北京: 化学工业出版社, 2007
|
3 |
Park S, Shehzad M A, Khan M F, et al. Effect of grain boundaries on electrical properties of polycrystalline graphene [J]. Carbon, 2017, 112: 142
doi: 10.1016/j.carbon.2016.11.010
|
4 |
Wang D L, Feng Y, Li S, et al. Manufacturing process and property of Al2O3 dispersion strengthened copper-based composite material [J]. Met. Funct. Mater., 2009, (2): 24
|
|
王东里, 凤 仪, 李庶 等. Al2O3弥散强化铜基复合材料的制备及性能研究 [J]. 金属功能材料, 2009, (2): 24
|
5 |
Zhang P, Jie J, Gao Y, et al. Preparation and properties of TiB2 particles reinforced Cu-Cr matrix composite [J]. Mater. Sci. Eng., A, 2015, 642: 398
doi: 10.1016/j.msea.2015.07.021
|
6 |
Zhang S L, Yi Z M. High-strength and high-conductivity copper alloys: Designing considerations and their application [J]. Mater. Rev., 2003, (11): 26
|
|
张生龙, 尹志民. 高强高导铜合金设计思路及其应用 [J]. 材料导报, 2003, (11): 26
|
7 |
Deng J Q, Wu Y C, Chen Y. Comment on research of high strength and electric conductivity copper (alloy) -based composites [J]. Mater. Rev., 2005, (10): 80
|
|
邓景泉, 吴玉程, 陈勇. 高强高导铜(合金)基复合材料强化与物性研究进展 [J]. 材料导报, 2005, (10): 80
|
8 |
Li J, Wang X, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites [J]. Scripta Mater, 2015: 72
|
9 |
Davis J R. Copper and copper alloys[J]. Corrosion, 2001, 3 (2): 527
|
10 |
Ling Z C, Yan C X, Shi Q N, et al. Recent progress in preparation methods for metal matrix composite materials reinforced with graphene nanosheets [J]. Mater. Rev., 2015, 29 (4): 143
|
11 |
Lv J M, Zhang X H, Xiong D B, et al. Progress and prospect of ultra-conductive copper matrix materials [J]. Mater. China, 2018, 37(6): 453
|
|
吕吉敏, 章潇慧, 熊定邦 等. 超高导电铜基材料的研究现状与展望 [J]. 中国材料进展, 2018, 37(6): 453
|
12 |
Song M H, Zhang Y, Li Y. Effect of graphene content on microstructure and thermal conduction properties of graphene/Cu composites [J]. Heilongjiang Science, 2017, 8 (4): 7
|
|
宋美慧, 张煜, 李艳. 石墨烯含量对石墨烯/Cu复合材料组织及导热性能的影响 [J]. 黑龙江科学, 2017, 8 (4): 7
|
13 |
Rashad M, Pan F, Tang A, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method [J]. Prog. Nat. Sci., 2014, (2): 101
|
14 |
Yang M, Hu L, Tang X, et al. Longitudinal splitting versus sequential unzipping of thick-walled carbon nanotubes: towards controllable synthesis of high-quality graphitic nanoribbons [J]. Carbon, 2016, (110): 480
|
15 |
Arnaud C, Lecouturier F, Mesguich D, et al. High strength-high conductivity double-walled carbon nanotube-copper composite wires [J]. Carbon, 2016, (96): 212
|
16 |
Xue Z W, Wang L D, Zhao P T, et al. Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular level dispersion [J]. Mater. Des., 2012, 34: 298
doi: 10.1016/j.matdes.2011.08.021
|
17 |
Hwang J, Yoon T, Jin S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular level mixing process [J]. Adv. Mater., 2013, 25(46): 6724
doi: 10.1002/adma.201302495
|
18 |
Chen Y, Zhang X, Liu E, et al. Fabrication of three dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism [J]. J. Alloys Compd., 2016, (688): 69
|
19 |
Tang Y, Yang X, Wang R, et al. Enhancement of the mechanical properties of graphene copper composites with graphene-nickel hybrids [J]. Mater. Sci. Eng., A, 2014, 599: 247
doi: 10.1016/j.msea.2014.01.061
|
20 |
Jiang R, Zhou X, Liu Z. Electroless Ni plated graphene for tensile strength enhancement of copper [J]. Mater. Sci. Eng., A, 2017, 679: 323
doi: 10.1016/j.msea.2016.10.029
|
21 |
Liu P, Zhu E F, Yan C X, et al. Strength and electrical properties of graphene reinforced copper matrix composites with different nickel contents [J]. Chinese Journal of Rare Metals, 2018, (7): 735
|
|
刘朋, 朱恩福, 闫翠霞 等. 镍含量对铜基石墨烯复合材料力电性能的影响 [J]. 稀有金属, 2018, (7): 735
|
22 |
Nam D H, Cha S I, Lim B K, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites [J]. Carbon, 2012, 50 (7): 2417
doi: 10.1016/j.carbon.2012.01.058
|
23 |
Xu Z, Buehler M J. Interface structure and mechanics between graphene and metal substrates: a first-principles study [J]. J. Phys.: Condens. Matter., 2010, 22 (48): 485301
doi: 10.1088/0953-8984/22/48/485301
|
24 |
Yan S J, Dai S L, Zhang X Y, et al. Investigating aluminum alloy reinforced by graphene nanoflakes [J]. Mater. Sci. Eng., A, 2014, 612(26): 440
doi: 10.1016/j.msea.2014.06.077
|
25 |
Dieter G E. Mechanical Metallurgy [M]. New York: McGraw-Hill, 1988
|
26 |
Rashad M, Pan F, Asif M, et al. Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) [J]. J. Ind. Eng. Chem., 2014, 20(6): 4250
doi: 10.1016/j.jiec.2014.01.028
|
27 |
Zhang Q, Chen D L. A model for predicting the particle size dependence of the low cycle fatigue life in discontinuously reinforced MMCs [J]. Scripta Mater, 2004, 51(9): 863
doi: 10.1016/j.scriptamat.2004.07.006
|
28 |
Meyers M A, Chawla K K. Mechanical behaviour of materials [M]. Saddle River (NJ): Prentice Hall, 1999
|
29 |
Zhang Z, Chen D L. Consideration of orowan strengthening effect in particulate reinforced metal matrix nanocomposites: a model for predicting their yield strength [J]. Scripta Mater, 2006, 54(7): 1321
doi: 10.1016/j.scriptamat.2005.12.017
|
30 |
Luster J W, Thumann M, Baumann R. Mechanical properties of aluminium alloy 6061-Al2O3 composites [J]. Mater. Sci. Technol., 1993, 9 (10): 853
doi: 10.1179/026708393790171421
|
31 |
Miller W S, Humphreys F J. Strengthening mechanisms in particulate metal matrix composites [J]. Scripta Metallurgica Et Materialia, 1991, 25(1): 33
doi: 10.1016/0956-716X(91)90349-6
|
32 |
Wen P, Tao G, Ren B X, et al. Superplastic deformation mechanism of nanocrystalline copper: a molecular dynamics study [J]. Acta Phys. Sin., 2015, 64(12): 126201
doi: 10.7498/aps.64.126201
|
|
闻鹏, 陶钢, 任保祥 等. 纳米多晶铜的超塑性变形机理的分子动力学探讨 [J]. 物理学报, 2015, 64 (12): 126201
|
33 |
Szablewski J, Haimant R. Heat mechanical treatment for copper alloy [J]. Mater. Sci. Technol., 1985, (1): 1053
|
34 |
Zhang P, Li Y, Lei Q, et al. Microstructure and mechanical properties of a Cu-Ni-Ti alloy with a large product of strength and elongation [J]. J. Mater. Res. Technol., 2020, 9 (2): 2299
doi: 10.1016/j.jmrt.2019.12.061
|
35 |
Qian L, Xiao Z, Hu W, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy [J]. Mater. Sci. Eng., A, 2017, 697: 37
doi: 10.1016/j.msea.2017.05.001
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|