Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (10): 777-785    DOI: 10.11901/1005.3093.2021.492
ARTICLES Current Issue | Archive | Adv Search |
Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites
ZONG Yixun, LI Shufeng(), LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu
School of Materials Science and Engineering, Xi´an University of Technology, Xi´an 710048, China
Cite this article: 

ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites. Chinese Journal of Materials Research, 2022, 36(10): 777-785.

Download:  HTML  PDF(15369KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Graphene nanosheets (GNP) reinforced Cu-based composites GNP-Cu and GNP-Ni/Cu were prepared via a three-step process, i.e. wet mixing powders of Cu, Ni and GNP, then spark plasma sintering and finally hot extrusion. The phase composition, microstructure, density, electrical conductivity, and mechanical properties of GNP-Ni/Cu composites were characterized, and the mechanism of GNP and Ni strengthening GNP-Ni /Cu composites was also investigated. The results show that the microhardness and yield strength of GNP-Ni/Cu composite with 0.2% GNP and 1.5% Ni (in mass fraction) are 38% and 50% higher than those of simple Cu, and 14.0% and 11.6% higher than those of 0.2GNP/Cu composite, respectively. These results indicate that the interface bonding between GNP and Cu was improved by Ni addition, and the mechanical properties of GNP-Ni/Cu composites were significantly improved. The load transfer strengthening and thermal mismatch strengthening of GNP and the Ni solution strengthening are the main causes for the improvement of mechanical properties of materials.

Key words:  composites      powder metallurgy      mechanical properties      interface control      strengthening mechanism     
Received:  24 August 2021     
ZTFLH:  TF124  
Fund: National Natural Science Foundation of China(51871180)
About author:  LI Shufeng, Tel: 15529661629, E-mail: shufengli@xaut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.492     OR     https://www.cjmr.org/EN/Y2022/V36/I10/777

Fig.1  Schematic of the fabrication procedures for copper matrix composites
Fig.2  Microstructure of raw powder (a) Cu powder; (b) Ni powder; (c) GNP
Fig.3  Raman spectra of raw GNP, 0.2GNP/Cu and 0.2GNP-1.5Ni/Cu mixed powder and composites after hot extrusion
Fig.4  XRD patterns of GNP/Cu and GNP-Ni/Cu mixed powder and composites after hot extrusion (a, b) GNP/Cu; (c, d) GNP-Ni/Cu
Fig.5  Microstructure of 0.2GNP/Cu and 0.2GNP-1.5Ni/Cu composites (a) SEM; (a1~a3) Distribution of C, Ni and Cu elements; (b, d) Optical images of composites after sintering; (b1) EDS; (c, e) Optical images of longitudinal cross-section of composites after hot extrusion, the arrow represents direction of extrusion
Fig.6  TEM, selected electron diffraction pattern and diffraction fringe corresponding to the lattice image of 0.2GNP-1.5Ni/Cu composite after hot extrusion (a) Electronic image; (b) Bright-field image; (b1~b2) Diff.1 and Diff.2 are the diffraction pattern in different regions in (b); (c) HR-TEM; (c1~c3) Diffraction fringe of lattice image in different region in (c)
Fig.7  EBSD results of pure Cu and CMCs after hot extrusion (a) pure Cu; (b) 0.2GNP/Cu; (c) 0.2GNP-1.5Ni/Cu; (a1~c1) Cu matrix grain size distribution
Fig.8  Relative density and electrical conductivity of pure Cu and CMCs
Fig.9  Stress-strain curves of pure Cu and CMCs after hot extrusion
Fig.10  Fracture morphology of pure Cu and CMCs (a) 0.2GNP/Cu; (b) 0.5GNP/Cu; (c, d) 1.0GNP/Cu; (e) 0.2GNP-0.5Ni/Cu; (f) 0.2GNP-1.0Ni/Cu; (g~h) 0.2GNP-1.5Ni/Cu
Fig.11  Theoretical contribution of each strengthening mechanism to yield strength of GNP-Ni/Cu composite (a) Theoretical contribution value, (b) Theoretical contribution ratio
1 Zeng Z M. Practical Metal Material Selection Manual [M]. Beijing: China Machine Press, 2012
曾正明. 实用金属材料选用手册 [M]. 北京: 机械工业出版社, 2012
2 Liu P, Ren F Z, Jia S G. Copper Alloys and Their Applications [M]. Beijing: Chemical Industry Press, 2007
刘 平, 任凤章, 贾淑果. 铜合金及其应用 [M]. 北京: 化学工业出版社, 2007
3 Park S, Shehzad M A, Khan M F, et al. Effect of grain boundaries on electrical properties of polycrystalline graphene [J]. Carbon, 2017, 112: 142
doi: 10.1016/j.carbon.2016.11.010
4 Wang D L, Feng Y, Li S, et al. Manufacturing process and property of Al2O3 dispersion strengthened copper-based composite material [J]. Met. Funct. Mater., 2009, (2): 24
王东里, 凤 仪, 李庶 等. Al2O3弥散强化铜基复合材料的制备及性能研究 [J]. 金属功能材料, 2009, (2): 24
5 Zhang P, Jie J, Gao Y, et al. Preparation and properties of TiB2 particles reinforced Cu-Cr matrix composite [J]. Mater. Sci. Eng., A, 2015, 642: 398
doi: 10.1016/j.msea.2015.07.021
6 Zhang S L, Yi Z M. High-strength and high-conductivity copper alloys: Designing considerations and their application [J]. Mater. Rev., 2003, (11): 26
张生龙, 尹志民. 高强高导铜合金设计思路及其应用 [J]. 材料导报, 2003, (11): 26
7 Deng J Q, Wu Y C, Chen Y. Comment on research of high strength and electric conductivity copper (alloy) -based composites [J]. Mater. Rev., 2005, (10): 80
邓景泉, 吴玉程, 陈勇. 高强高导铜(合金)基复合材料强化与物性研究进展 [J]. 材料导报, 2005, (10): 80
8 Li J, Wang X, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites [J]. Scripta Mater, 2015: 72
9 Davis J R. Copper and copper alloys[J]. Corrosion, 2001, 3 (2): 527
10 Ling Z C, Yan C X, Shi Q N, et al. Recent progress in preparation methods for metal matrix composite materials reinforced with graphene nanosheets [J]. Mater. Rev., 2015, 29 (4): 143
11 Lv J M, Zhang X H, Xiong D B, et al. Progress and prospect of ultra-conductive copper matrix materials [J]. Mater. China, 2018, 37(6): 453
吕吉敏, 章潇慧, 熊定邦 等. 超高导电铜基材料的研究现状与展望 [J]. 中国材料进展, 2018, 37(6): 453
12 Song M H, Zhang Y, Li Y. Effect of graphene content on microstructure and thermal conduction properties of graphene/Cu composites [J]. Heilongjiang Science, 2017, 8 (4): 7
宋美慧, 张煜, 李艳. 石墨烯含量对石墨烯/Cu复合材料组织及导热性能的影响 [J]. 黑龙江科学, 2017, 8 (4): 7
13 Rashad M, Pan F, Tang A, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method [J]. Prog. Nat. Sci., 2014, (2): 101
14 Yang M, Hu L, Tang X, et al. Longitudinal splitting versus sequential unzipping of thick-walled carbon nanotubes: towards controllable synthesis of high-quality graphitic nanoribbons [J]. Carbon, 2016, (110): 480
15 Arnaud C, Lecouturier F, Mesguich D, et al. High strength-high conductivity double-walled carbon nanotube-copper composite wires [J]. Carbon, 2016, (96): 212
16 Xue Z W, Wang L D, Zhao P T, et al. Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular level dispersion [J]. Mater. Des., 2012, 34: 298
doi: 10.1016/j.matdes.2011.08.021
17 Hwang J, Yoon T, Jin S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular level mixing process [J]. Adv. Mater., 2013, 25(46): 6724
doi: 10.1002/adma.201302495
18 Chen Y, Zhang X, Liu E, et al. Fabrication of three dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism [J]. J. Alloys Compd., 2016, (688): 69
19 Tang Y, Yang X, Wang R, et al. Enhancement of the mechanical properties of graphene copper composites with graphene-nickel hybrids [J]. Mater. Sci. Eng., A, 2014, 599: 247
doi: 10.1016/j.msea.2014.01.061
20 Jiang R, Zhou X, Liu Z. Electroless Ni plated graphene for tensile strength enhancement of copper [J]. Mater. Sci. Eng., A, 2017, 679: 323
doi: 10.1016/j.msea.2016.10.029
21 Liu P, Zhu E F, Yan C X, et al. Strength and electrical properties of graphene reinforced copper matrix composites with different nickel contents [J]. Chinese Journal of Rare Metals, 2018, (7): 735
刘朋, 朱恩福, 闫翠霞 等. 镍含量对铜基石墨烯复合材料力电性能的影响 [J]. 稀有金属, 2018, (7): 735
22 Nam D H, Cha S I, Lim B K, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites [J]. Carbon, 2012, 50 (7): 2417
doi: 10.1016/j.carbon.2012.01.058
23 Xu Z, Buehler M J. Interface structure and mechanics between graphene and metal substrates: a first-principles study [J]. J. Phys.: Condens. Matter., 2010, 22 (48): 485301
doi: 10.1088/0953-8984/22/48/485301
24 Yan S J, Dai S L, Zhang X Y, et al. Investigating aluminum alloy reinforced by graphene nanoflakes [J]. Mater. Sci. Eng., A, 2014, 612(26): 440
doi: 10.1016/j.msea.2014.06.077
25 Dieter G E. Mechanical Metallurgy [M]. New York: McGraw-Hill, 1988
26 Rashad M, Pan F, Asif M, et al. Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) [J]. J. Ind. Eng. Chem., 2014, 20(6): 4250
doi: 10.1016/j.jiec.2014.01.028
27 Zhang Q, Chen D L. A model for predicting the particle size dependence of the low cycle fatigue life in discontinuously reinforced MMCs [J]. Scripta Mater, 2004, 51(9): 863
doi: 10.1016/j.scriptamat.2004.07.006
28 Meyers M A, Chawla K K. Mechanical behaviour of materials [M]. Saddle River (NJ): Prentice Hall, 1999
29 Zhang Z, Chen D L. Consideration of orowan strengthening effect in particulate reinforced metal matrix nanocomposites: a model for predicting their yield strength [J]. Scripta Mater, 2006, 54(7): 1321
doi: 10.1016/j.scriptamat.2005.12.017
30 Luster J W, Thumann M, Baumann R. Mechanical properties of aluminium alloy 6061-Al2O3 composites [J]. Mater. Sci. Technol., 1993, 9 (10): 853
doi: 10.1179/026708393790171421
31 Miller W S, Humphreys F J. Strengthening mechanisms in particulate metal matrix composites [J]. Scripta Metallurgica Et Materialia, 1991, 25(1): 33
doi: 10.1016/0956-716X(91)90349-6
32 Wen P, Tao G, Ren B X, et al. Superplastic deformation mechanism of nanocrystalline copper: a molecular dynamics study [J]. Acta Phys. Sin., 2015, 64(12): 126201
doi: 10.7498/aps.64.126201
闻鹏, 陶钢, 任保祥 等. 纳米多晶铜的超塑性变形机理的分子动力学探讨 [J]. 物理学报, 2015, 64 (12): 126201
33 Szablewski J, Haimant R. Heat mechanical treatment for copper alloy [J]. Mater. Sci. Technol., 1985, (1): 1053
34 Zhang P, Li Y, Lei Q, et al. Microstructure and mechanical properties of a Cu-Ni-Ti alloy with a large product of strength and elongation [J]. J. Mater. Res. Technol., 2020, 9 (2): 2299
doi: 10.1016/j.jmrt.2019.12.061
35 Qian L, Xiao Z, Hu W, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy [J]. Mater. Sci. Eng., A, 2017, 697: 37
doi: 10.1016/j.msea.2017.05.001
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[4] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[9] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[10] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[14] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!