Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (10): 769-776    DOI: 10.11901/1005.3093.2021.579
ARTICLES Current Issue | Archive | Adv Search |
Investigation on Static Fusion Welding Performance of Cu-W Composite with Microscopically Oriented Skeleton Structures
HAN Ying1(), QIN Jie1, CAO Yundong1, LI Shujun2()
1.School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

HAN Ying, QIN Jie, CAO Yundong, LI Shujun. Investigation on Static Fusion Welding Performance of Cu-W Composite with Microscopically Oriented Skeleton Structures. Chinese Journal of Materials Research, 2022, 36(10): 769-776.

Download:  HTML  PDF(1884KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Cu-W composites with three different microstructures, namely quadrilateral, hexagonal and rhomboidal microdirectional skeleton structure were designed and prepared, and their static welding properties were investigated, by taking the Cu-W composites with disordered skeleton structure as comparison. According to the principle of fluid mechanics, the variation of temperature and conduction heat flux for composites of various macrostructures with time were analyzed by means of finite element method, and their thermal conductivity was calculated. The results show that the contact resistance of Cu-W composites with microscopically oriented skeleton structure is lower and more stable, among others, the composite with rhombic dodecahedral skeleton has the lowest contact resistance, and where may exist a heat conducting chain, and even an uniformly distributed heat conducting network, which reduces the regional thermal resistance to a greater extent. According to the Marangoni effect, the molten pool morphology of the composites with different microstructures is compared, and it is found that the regular distribution of Cu and W two-phase materials can facilitate the reduction of the size of aggressed area induced by the static fusion welding, accordingly the rhomboidal dodecahedron matrix composites have the lowest aggressed area.

Key words:  composite      micro-oriented structure      static welding      contact resistance      melting phase transition     
Received:  09 October 2021     
ZTFLH:  TG146.1  
Fund: National Natural Science Foundation of China(51977132);Natural Science Foundation of Liaoning Province(2019-MS-249 & LACT-007);Opening Project of National Key Laboratory of Shock Wave and Detonation Physics(6142A03203002)
About author:  LI Shujun, Tel: 13840185937, E-mail: shjli@imr.ac.cn
HAN Ying, Tel: 13478250188, E-mail: hany_dq@sut.edu.cn;

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.579     OR     https://www.cjmr.org/EN/Y2022/V36/I10/769

Fig.1  Micro morphology of dragonfly veins
Fig.2  Geometric model of Cu-W composite with quadrilateral (a), hexagon (b), rhombic dodecahedron (c) and disordered (d) framework structure
Fig.3  Rhombic dodecahedron unit cell of W framework
Fig.4  Average temperature in contact spot center of Cu-W composites with different W framework
Fig.5  Surface temperature distribution of Cu-W composites with quadrilateral (a), hexagonal (b), rhombic dodecahedron (c) and disordered (d) W framework
Fig.6  Conduction heat flux during heating stage in Cu-W composite with quadrilateral (a), hexagon (b), rhombic dodecahedron (c) and disordered (d) W framework
Fig.7  Microscopic heat conduction unit schematic diagram of quadrilateral (a), hexagon (b) and rhombic dodecahedron (c) W framework
Fig.8  Diffuse range of liquid metal at different moments duing the heating stage in Cu-W composite with quadrilateral (a), hexagon (b), rhombic dodecahedron (c) and disordered (d) W framework
Fig.9  Molten pool shape at 25 μs in Cu-W composite with quadrilateral (a), hexagon (b), rhombic dodecahedron (c) and disordered (d) W framework
Fig.10  Liquid phase volume of molten pool in Cu-W composites with different micro-oriented W framework
1 Li Z B, Zhang G S, Qin Q S. Static welding resistance of electric contact materials [J]. Proc. CSEE, 1994, 14(1): 34
李震彪, 张冠生, 秦庆生. 电触头材料抗静熔焊能力的研究 [J]. 中国电机工程学报, 1994, 14(1): 34
2 Doublet L, Jemaa N B, Hauner F, et al. Electrical arc phenomena and its interaction on contact material at 42 volts DC for automotive applications [A]. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts Electrical Contacts, 2004 [C]. Seattle, WA, USA: IEEE, 2004: 8
3 Liu G J, Lu J G, Wang H T, et al. Failure analysis of contactor relay [J]. Trans. China Electrotech. Soc., 2011, 26(1): 81
刘帼巾, 陆俭国, 王海涛 等. 接触器式继电器的失效分析 [J]. 电工技术学报, 2011, 26(1): 81
4 Qiao X L. Study on dynamic welding of high voltage DC power relay contact [D]. Harbin: Harbin Institute of Technology, 2016
乔鑫磊. 高压直流大功率继电器触头动熔焊现象研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016
5 Sun X X. Study of preparation and thermal property of three dimensional graphene based nanocomposites [D]. Harbin: Harbin Institute of Technology, 2017
孙贤贤. 三维石墨烯基纳米复合材料的制备及导热性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017
6 Ye C L. Preparation of Zn2SnO4 nanopowder and its application in silver-based electrical contact materials [D]. Hangzhou: Zhejiang University, 2019
叶晨琳. 纳米锡酸锌制备及其在银基电接触材料中的应用研究 [D]. 杭州: 浙江大学, 2019
7 Ma D Q. Study on processing and electrical contact properties of high dense ultrafined W-Cu composites [D]. Zhengzhou: Zhengzhou University, 2016
马窦琴. 细晶高致密钨铜复合材料制备及电接触性能研究 [D]. 郑州: 郑州大学, 2016
8 Zhu Y C, Wang J Q, An L Q, et al. Preparation and electrical performance of new Ag/SnO2/CeO2 electrical contact materials [J]. Rare Metal Mat. Eng., 2015, 44(8): 2011
朱艳彩, 王景芹, 安立强 等. 新型Ag/SnO2/CeO2电器触头材料的制备及其电气性能的研究 [J]. 稀有金属材料与工程, 2015, 44(8): 2011
9 Li W H. Preparation and application of graphite film/copper composite materials with high thermal conductivity [D]. Xiangtan: Xiangtan University, 2018
李文虎. 高导热石墨膜/铜复合材料的制备及应用 [D]. 湘潭: 湘潭大学, 2018
10 Chen J J, Liu B F, Gao X H. Thermal properties of graphene-based polymer composite materials: A molecular dynamics study [J]. Results Phys., 2020, 16: 102974
doi: 10.1016/j.rinp.2020.102974
11 Zhang X M, Wu H, Guo S Y. Preparation of a thermally conductive network with a highly oriented and ordered distribution structure [A]. China Composites Industry Association, Summary of the 3rd China International Composite Materials Technology Conference-Sub-venue. Hangzhou: Chinese Society for Composite Materials, 2017: 106
张晓朦, 吴 宏, 郭少云. 制备具有高度取向和有序分布结构的导热网络 [A]. 第三届中国国际复合材料科技大会摘要集-分会场1-5 [C]. 杭州: 中国复合材料学会, 2017: 106
12 Wang Y S. Study on the preparation and electrical properties of ordered submicron structured conductive polymer materials [D]. Yangzhou: Yangzhou University, 2011
王玉霜. 有序亚微米结构导电高分子材料的制备及电性能研究 [D]. 扬州: 扬州大学, 2011
13 Song P. The study of three dimension ordered nano self-assembly materials and properties based on ice template method [D]. Hefei: Hefei University of Technology, 2018
宋 品. 基于冰模板法构筑三维有序纳米自组装材料与性能研究 [D]. 合肥: 合肥工业大学, 2018
14 Li S W. Study on ordered polymer-based composite films [D]. Tianjin: Tianjin University, 2017
李双雯. 定向有序结构的聚合物基复合膜的研究 [D]. 天津: 天津大学, 2017
15 Ying J F, Tan X, Lv L, et al. Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates [J]. ACS Nano, 2021, 15(8): 12922
doi: 10.1021/acsnano.1c01332
16 Lu S X. Study on preparation and performance of porous ceramics with directional pore structure [D]. Guangzhou: South China University of Technology, 2020
卢舒欣. 有序孔结构多孔陶瓷的制备及其性能研究 [D]. 广州: 华南理工大学, 2020
17 Sun Y N, Wu Y J, Cai H, et al. A modified 360° netting vein bionic structure for enhancing thermal properties of polymer/nanofiber/nanoparticle composite [J]. Composites, 2021, 143A: 106276
18 Lei Y P. Natural loofah based bio-inspired structural material and its thermal and mechanical properties [D]. Zhengzhou: Henan University of Technology, 2017
雷永鹏. 基于丝瓜微结构的超轻仿生结构设计与热、力学分析 [D]. 郑州: 河南工业大学, 2017
19 Sun F Q. Preparation and properties of bionic micro-structured graphene high elastic strain-insensitive conductive fiber [D]. Qingdao: Qingdao University, 2020
孙奉强. 仿生微结构石墨烯高弹性应变不灵敏导电纤维制备及其性能研究 [D]. 青岛: 青岛大学, 2020
20 Han Y, Wang H S, Cao Y D, et al. Mechanical and electrical properties of Cu-W composites with micro-oriented structures [J]. Acta Metall. Sin., 2021, 57(8): 1009
doi: 10.11900/0412.1961.2020.00387
韩 颖, 王宏双, 曹云东 等. 微观定向结构Cu-W复合材料的力学与电学性能 [J]. 金属学报, 2021, 57(8): 1009
21 Chen Y P, Cheng P. Heat transfer and pressure drop in fractal tree-like microchannel nets [J]. Int. J. Heat Mass Transfer, 2002, 45(13): 2643
doi: 10.1016/S0017-9310(02)00013-3
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!