Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (7): 510-516    DOI: 10.11901/1005.3093.2020.274
ARTICLES Current Issue | Archive | Adv Search |
Fatigue Crack Initiation Behavior at Intermediate Temperature under High Stress Amplitude for Single Crystal Superalloy DD413
HUANG Yaqi1,2, WANG Dong1, LU Yuzhang1, XIONG Ying3, SHEN Jian1()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.AECC South Industry Company Limited, Zhuzhou 412002, China
Cite this article: 

HUANG Yaqi, WANG Dong, LU Yuzhang, XIONG Ying, SHEN Jian. Fatigue Crack Initiation Behavior at Intermediate Temperature under High Stress Amplitude for Single Crystal Superalloy DD413. Chinese Journal of Materials Research, 2021, 35(7): 510-516.

Download:  HTML  PDF(2538KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fatigue crack initiation behavior of a single crystal superalloy DD413 was investigated under high stress amplitude at intermediate temperature. The fracture surfaces and longitudinal section morphologies of the test specimens were characterized by scanning electron microscope (SEM). It was found that fatigue cracks mostly initiate from the cracked blocky carbides on the surface as well as the cracked skeleton-like carbides at subsurface. All the carbides on the surface of testing specimen crack due to the combined effect of oxidation and cyclic loading. Besides, at the subsurface of testing specimen, the carbides located on the propagation path of a micro-crack can crack as a result of oxidation and cyclic loading. The micro-crack connected to the surface in the specimen is the transportation channel of oxygen for the oxidation of the carbides at the subsurface. Carbides cracked and the micro-crack initiated at the early stage of fatigue, which induced the final failure.

Key words:  metallic materials      single crystal superalloy      high stress amplitude      carbide cracking      fatigue crack initiation     
Received:  06 July 2020     
ZTFLH:  TG403.4050  
Fund: National Natural Science Foundation of China(51631008);National Science and Technology Major Project(2017-VII-0008-0101 & 2017-VI-0003-0073);Key Deployment Projects of the Chinese Academy of Sciences(ZDRW-CN-2019-01)
About author:  SHEN Jian, Tel: 13804984964, E-mail: shenjian@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.274     OR     https://www.cjmr.org/EN/Y2021/V35/I7/510

AlloyCCrCoWMoAlTiTaNi
DD4130.0512.09.04.02.03.44.05.0Bal.
Table 1  Nominal composition of the superalloy used in the experiments (mass fraction/%)
Fig.1  Microstructure of the alloy before fatigue test (a) dendritic microstructure and (b) morphology and EDS result of the carbide
Fig.2  Stress amplitude as a function of the number of cycles to failure
Fig.3  Surface morphology and fracture surfaces of fatigue specimens after failure (a, c) S3; (b, d) S5
Fig.4  Longitude section morphologies of the cracked carbides on the surface at 1500 cycles (~0.1 Nf) (a) and after failure (c), EDS linear scanning results (b, d, e) of the cracked carbide as marked by the arrows in Fig.4a and Fig.4c
Fig.5  Morphology of the carbides on the surface of polished sample explored at 760℃ for 30 min without loading
Fig.6  Diagram illustrating the cracking process of MC carbide
Fig.7  Longitude section morphologies of the carbides at subsurface of the specimen (a) cracked carbide on the propagation path of micro-crack, (b) no cracked carbides located around micro-crack
Fig.8  Morphology of the micro-pore in S5 after failure
1 Reed R C, Tao T, Warnken N. Alloys-by-design: application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5898
2 Sun X F, Jin T, Zhou Y Z, et al. Research progress of nickel-base single crystal superalloys [J]. Mater. Chin., 2012, 31(12): 1
孙晓峰, 金涛, 周亦胄等. 镍基单晶高温合金研究进展 [J]. 中国材料进展, 2012, 31(12): 1
3 Wang L, Zhou Z J, Jiang W G, et al. Effect of secondary orientation on thermal fatigue behavior of a nickel-base single crystal superalloy DD33 [J]. Chin. J. Mater. Res., 2014, 28: 663
王莉, 周忠娇, 姜卫国等. 第二取向对镍基单晶高温合金DD33热疲劳性能的影响 [J]. 材料研究学报, 2014, 28: 663
4 Zhang Y L, Wang X G, Li J G, et al. The low-cycle fatigue deformation mechanisms of two single crystal superalloys at room temperature and 600℃ [J]. Scr. Mater., 2019, 171: 122
5 Ormastroni L M B, Suave L M, Cervellon A, et al. LCF, HCF and VHCF life sensitivity to solution heat treatment of a third-generation Ni-based single crystal superalloy [J]. Int. J. Fatigue, 2020, 130: 105247
6 Rémy L, Geuffrard M, Alam A, et al. Effects of microstructure in high temperature fatigue: lifetime to crack initiation of a single crystal superalloy in high temperature low cycle fatigue [J]. Int. J. Fatigue, 2013, 57: 37
7 Hang X P, Wang C H, Chen W, et al. Investigation of short fatigue cracks in nickel-based single crystal superalloy SC16 by in-situ SEM fatigue testing [J]. Scr. Mater., 2001, 44: 2443
8 Ma X F, Shi H J. In situ SEM studies of the low cycle fatigue behavior of DZ4 superalloy at elevated temperature: effect of partial recrystallization [J]. Int. J. Fatigue, 2014, 61: 255
9 Cervellon A, Hémery S, Kürnsteiner P, et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature [J]. Acta Mater., 2020, 188: 131
10 Ruttert B, Meid C, Roncery L M, et al. Effect of porosity and eutectics on the high-temperature low-cycle fatigue performance of a nickel-base single-crystal superalloy [J]. Scr. Mater., 2018, 155: 139
11 Morrissey R J, John R, Porter III W J. Fatigue variability of a single crystal superalloy at elevated temperature [J]. Int. J. Fatigue, 2009, 31: 1758
12 Cervellon A, Cormier J, Mauget F, et al. Very high cycle fatigue of Ni-based single-crystal superalloys at high temperature [J]. Metall. Mater. Trans., 2018, 49A: 3938
13 Lamm M, Singer R F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483 [J]. Metall. Mater. Trans., 2007, 38A: 1177
14 Cervellon A, Cormier J, Mauget F, et al. VHCF life evolution after microstructure degradation of a Ni-based single crystal superalloy [J]. Int. J. Fatigue, 2017, 104: 251
15 Yi J Z, Torbet C J, Feng Q, et al. Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000℃ [J]. Mater. Sci. Eng., 2007, 443A: 142
16 Liu Y H, Kang M D, Wu Y, et al. Effects of microporosity and precipitates on the cracking behavior in polycrystalline superalloy Inconel 718 [J]. Mater. Charact., 2017, 132: 175
17 Li J R, Xie H J, Han M, et al. High cycle fatigue behavior of second generation single crystal superalloy [J]. Acta Metall. Sin., 2019, 55: 1195
李嘉荣, 谢洪吉, 韩梅等. 第二代单晶高温合金高周疲劳行为研究 [J]. 金属学报, 2019, 55: 1195
18 Reuchet J, Remy L. Fatigue oxidation interaction in a superalloy—application to life prediction in high temperature low cycle fatigue [J]. Metall. Mater. Trans., 1983, 14A: 141
19 Connolley T, Reed P A S, Starink M J. Short crack initiation and growth at 600℃ in notched specimens of Inconel 718 [J]. Mater. Sci. Eng., 2003, 340A: 139
20 Kontis P, Alabort E, Barba D, et al. On the role of boron on improving ductility in a new polycrystalline superalloy [J]. Acta Mater., 2017, 124: 489
21 Kontis P, Collins D M, Wilkinson A J, et al. Microstructural degradation of polycrystalline superalloys from oxidized carbides and implications on crack initiation [J]. Scr. Mater., 2018, 147: 59
22 Suave L M, Muñoz A S, Gaubert A, et al. Thin-wall debit in creep of DS200 + Hf alloy [J]. Metall. Mater. Trans., 2018, 49A: 4012
23 Reed P A S. Fatigue crack growth mechanisms in superalloys: overview [J]. Mater. Sci. Technol., 2009, 25: 258
24 Pineau A, McDowell D L, Busso E P, et al. Failure of metals II: Fatigue [J]. Acta Mater., 2016, 107: 484
25 Lukáš P, Kunz L. Cyclic slip localisation and fatigue crack initiation in fcc single crystals [J]. Mater. Sci. Eng., 2001, 314A: 75
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!