|
|
Environment-induced Brittle Wear Mechanism of K417G Alloy |
WANG Zhensheng1( ), XIE Wei1, PENG Zhen1,2, HE Yingqian3, ZENG Yanggen4 |
1.Hunan Provincial Key Laboratory of Mechanical Equipment Health Maintenance, Hunan University of Science and Technology, Xiangtan 411201, China 2.China Aviation Development South Industry Co. Ltd. , Zhuzhou 412002, China 3.Hunan South General Aviation Engine Co. Ltd. , Zhuzhou 412002, China 4.State Grid Hunan Electric Power Co. Ltd. , Loudi Power Supply Branch, Loudi 417000, China |
|
Cite this article:
WANG Zhensheng, XIE Wei, PENG Zhen, HE Yingqian, ZENG Yanggen. Environment-induced Brittle Wear Mechanism of K417G Alloy. Chinese Journal of Materials Research, 2021, 35(7): 501-509.
|
Abstract The friction and wear properties of K417G alloy in air, vacuum, oxygen, nitrogen, carbon dioxide, hydrogen, and argon environments with different relative humidity were assessed by means of a controlled atmosphere wear tester and SEM. Meanwhile, the stress intensity factor KI of the alloy wear surface crack is calculated based on linear elastic mechanics. The environmental sensitivity of alloying elements is also calculated based on energetics. The results show that under wear conditions, water vapor in the air with high relative humidity is the corrosive medium that causes hydrogen-induced brittle wear of K417G alloy. The water vapor reacts with γ′-Ni3Al in the alloy to form atomic H, which causes environmental embrittlement of the alloy. The environmental brittle crack may nucleate at the interfaces of γ/γ′and carbide/alloy matrix. The cracks not only extend along the interfaces of γ/γ′ and carbide/alloy matrix, but also enter the γ′ grains. The stress intensity factor KI of the crack on the alloy surface is smaller than the fracture toughness KIC of the alloy. Therefore, the contact stress on the worn surface of the alloy does not cause cracks wherein. Energetics calculations show that, in air, the occurrence of surface cracks on the wearing alloy is related to the Al content in the alloy, while the critical content of Al is 5.53% (atomic fraction).
|
Received: 06 July 2020
|
|
Fund: Natural Science Foundation of Hunan Province(2020JJ4312) |
About author: WANG Zhensheng, Tel: (0731)58290584, E-mail: zhsh_w@sina.com
|
1 |
Zhang T C, Jiang X X, Li S Z. Behaviour of hydrogen induced corrosion wear of Ti6Al4V alloy [J]. Corros. Sci. Prot. Technol., 1999, 11(3): 142
|
|
张天成, 姜晓霞, 李诗卓. Ti6Al4V合金氢致脆性磨损机制 [J]. 腐蚀科学与防护技术, 1999, 11(3): 142
|
2 |
Niste V B, Tanaka H, Ratoi M, et al. WS2 nanoadditized lubricant for applications affected by hydrogen embrittlement [J]. RSC Adv., 2015, 5: 40678
|
3 |
Lunarska E, Stabryla J, Nikiforow K, et al. Boron alloying and laser treatment to improve corrosion and hydrogen resistance of 25G steel [J]. Mater. Sci., 2005, 41: 551
|
4 |
Akonko S, Li D Y, Ziomek-Moroz M. Effects of cathodic protection on corrosive wear of 304 stainless steel [J]. Tribol. Lett., 2005, 18: 405
|
5 |
Guo J T. Materlals Science and Engineering for Superalloys [M]. Beijing: Science Press, 2010: 108
|
|
郭建亭. 高温合金材料学 [M]. 北京: 科学出版社, 2010: 108
|
6 |
Ao S S, Luo Z, Shan P, et al. Microstructure of inconel 601 nickel-based superalloy laser welded joint [J]. Chin. J. Nonferrous Met., 2015, 25: 2099
|
|
敖三三, 罗震, 单平等. Inconel 601镍基高温合金激光焊焊缝的显微组织 [J]. 中国有色金属学报, 2015, 25: 2099
|
7 |
Shen X M, Liu Y C, Ma G. Tribology for Aero-gas Turbine Engine [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2008: 319
|
|
沈心敏, 刘雨川, 马纲. 航空燃气轮机摩擦学 [M]. 北京: 北京航空航天大学出版社, 2008: 319
|
8 |
Stott F H, Lin D S, Wood G C. The structure and mechanism of formation of the 'glaze' oxide layers produced on nickel-based alloys during wear at high temperatures [J]. Corros. Sci., 1973, 13: 449
|
9 |
Hamdy M M, Waterhouse R B. The fretting wear of Ti-6Al-4V and aged inconel 718 at elevated temperature [J]. Wear, 1981, 71: 237
|
10 |
Iwabuchi A. Fretting wear of Inconel 625 at high temperature and in high vacuum [J]. Wear, 1985, 106: 163
|
11 |
Klaffke D, Carstens T, Banerji A. Influence of grain refinement on the high temperature fretting behaviour of IN 738 LC [J]. Wear, 1993, 160: 361
|
12 |
Xu X Y, Xu B S, Liu W J, et al. Study of fretting wear behavior of K417 nickel base superalloy [J]. J. Aeronaut. Mater., 2002, 22(4): 13
|
|
徐向阳, 徐滨士, 刘文今等. K417镍基高温合金微动磨损行为的研究 [J]. 航空材料学报, 2002, 22(4): 13
|
13 |
He Q S, Fu Y C, Chen J J, et al. Study on heat pipe grinding wheels when grinding superalloy GH4169 [J]. Diamond Abras. Eng., 2013, 33(4): 5
|
|
赫青山, 傅玉灿, 陈佳佳等. 热管砂轮磨削高温合金GH4169实验研究 [J]. 金刚石与磨料磨具工程, 2013, 33(4): 5
|
14 |
Qiao Y, Ai X, Liu Z Q, et al. Experimental investigation into milling of Nickel-based powder metallurgy superalloy with coated tools [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2010, 38(8): 83
|
|
乔阳, 艾兴, 刘战强等. 涂层刀具铣削粉末冶金镍基高温合金试验研究 [J]. 华南理工大学学报(自然科学版), 2010, 38(8): 83
|
15 |
Ren J X, Yang M K, Li Y Q, et al. Grinding characteristic of Nickel based superalloy [J]. Acta Aeronaut. Astronaut. Sin., 1997, 18: 755
|
|
任敬心, 杨茂奎, 李雅卿等. 镍基高温合金的磨削特征 [J]. 航空学报, 1997, 18: 755
|
16 |
Su X F. On creeping grinding and crack experiment of superalloys [J]. J. China Univ. Metrol., 2009, 20: 46
|
|
苏旭峰. 高温合金缓进磨削烧伤机理实验研究 [J]. 中国计量学院学报, 2009, 20: 46
|
17 |
Wang Z S, Peng Z, Yang S S, et al. Wear properties of K417G alloy and Ni(Co)CrAlYSi coatings deposited onto K417G under atmospheric environment at room temperature [J]. Chin. J. Nonferrous Met., 2016, 26: 602
|
|
王振生, 彭真, 杨双双等. 室温大气环境下K417G合金及其表面Ni(Co)CrAlYSi涂层的磨损特性 [J]. 有色金属学报, 2016, 26: 602
|
18 |
Peng Z, Wang Z S, Yang S S, et al. Friction and Wear behavior of K417G alloy and NiCrAlYSi coatings from room temperature to 400℃ [J]. Chin. J. Rare Met., 2017, 41: 276
|
|
彭真, 王振生, 杨双双等. K417G及其表面NiCrAlYSi涂层的摩擦磨损特性 [J]. 稀有金属, 2017, 41: 276
|
19 |
Dollar M, Bernstein I M. The effect of hydrogen on deformation substructure, flow and fracture in a nickel-base single crystal superalloy [J]. Acta Metall., 1988, 36: 2369
|
20 |
Chen P S, Wilcox R C. Fracture of single crystals of the nickel-base superalloy PWA 1480E in hydrogen at 22℃ [J]. Metall. Trans., 1991, 22A: 2031
|
21 |
Liao E B, Guo J T, Wang S H. Research on fatigue crack growth behavior of DZ17G at room temperature [J]. J. Aeronaut. Mater., 1999, 19: 39
|
|
廖鄂斌, 郭建亭, 王淑荷. 定向凝固合金DZ17G室温疲劳裂纹扩展行为的研究 [J]. 航空材料学报, 1999, 19: 39
|
22 |
Wang Z S, Guo J T, Zhou L Z, et al. High temperature wear behavior of NiAl-Cr(Mo)-Ho-Hf eutectic alloy [J]. Acta Metall. Sin., 2009, 45: 297
|
|
王振生, 郭建亭, 周兰章等. NiAl-Cr(Mo)-Ho-Hf共晶合金的高温磨损特性 [J]. 金属学报, 2009, 45: 297
|
23 |
Yuan W Z, Qiu M, Li X J, et al. Study on tribological properties of steel-copper couples in different humidity environments [J]. Lubricat. Eng., 2010, 35(4): 24
|
|
袁文征, 邱明, 李喜军等. 不同湿度环境中钢/铜配副摩擦磨损性能研究 [J]. 润滑与密封, 2010, 35(4): 24
|
24 |
Jiang X X, Li S Z, Li S. Corrosive Wear of Metals [M]. Beijing: Chemical Industry Press, 2003: 342
|
|
姜晓霞, 李诗卓, 李曙. 金属的腐蚀磨损 [M]. 北京: 化学工业出版社, 2003: 342
|
25 |
Bowden F P, Tabor D, translated by Chen S L, Yuan H C, Ding X J. The Friction and Lubrication of Solids [M]. Beijing: China Machine Press, 1982: 91
|
|
鲍登F P, 泰伯D著, 陈绍澧, 袁汉昌, 丁雪加译. 固体的摩擦与润滑 [M]. 北京: 机械工业出版社, 1982: 91
|
26 |
Zhai J W. Rolling wear of rail and the safety assessment of surface crack [D]. Qinhuangdao: Yanshan University, 2018
|
|
翟建伟. 钢轨的滚动磨损及表面裂纹安全性评定 [D]. 秦皇岛: 燕山大学, 2018
|
27 |
Na S J, Li J, Ai L Q. Mechanical Properties of Metallic Materials [M]. Beijing: Metallurgical Industry Press, 2011: 82
|
|
那顺桑, 李杰, 艾立群. 金属材料力学性能 [M]. 北京: 冶金工业出版社, 2011
|
28 |
Zhang Y G, Han Y F, Chen G L. Structural Materials of Intermetallics [M]. Beijing: National Defense Industry Press, 2001: 338
|
|
张永刚, 韩雅芳, 陈国良. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2001: 338
|
29 |
Liu C T. Environmental embrittlement and grain-boundary fracture in Ni3Al [J]. Scripta Metall. Mater., 1992, 27: 25
|
30 |
George E P, Liu C T, Pope D P. Environmental embrittlement: the major cause of room-temperature brittleness in polycrystalline Ni3Al [J]. Scr. Metall. Mater., 1992, 27: 365
|
31 |
George E P, Liu C T, Pope D P. Intrinsic ductility and environmental embrittlement of binary Ni3Al [J]. Scripta Metall. Mater., 1993, 28: 857
|
32 |
He C. Effect of hydrogen on tensile deformation behavior of GH690 alloy [D]. Shenyang: Northeastern University, 2012
|
|
何成. 氢对GH690合金拉伸变形行为的影响 [D]. 沈阳: 东北大学, 2012
|
33 |
Zhang D Z, Hsiao C M, Du G W. Energetical analysis of sensitivity of hydrogen embrittlement of ordered alloy [J]. Scripta Metall. Mater., 1993, 29: 901
|
34 |
Zhang D Z, Zou M D, Xiao J M. Energetical analysis of environmental embrittlement of intermetallic compounds [J]. Mater. Sci. Eng., 1997, 15: 17
|
|
张德志, 邹明达, 肖纪美. 金属间化合物环境敏感脆性的能量学分析 [J]. 材料科学与工程, 1997, 15: 17
|
35 |
Fu X C, Shen W X, Yao T Y, et al. Physical Chemistry (5th ed.) [M]. Beijing: People's Education Press, 2005: 483
|
|
傅献彩, 沈文霞, 姚天扬等. 物理化学(第5版) [M]. 北京: 人民教育出版社, 2005: 483
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|