Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (5): 339-348    DOI: 10.11901/1005.3093.2020.372
ARTICLES Current Issue | Archive | Adv Search |
A Multi-scale Model for Elucidation of Recrystallization and Texture of Mg-Alloy Sheet by Warm-rolling Process
SUN He1,2, CHEN Ming1,2(), CHENG Ming3, WANG Ruixue3, WANG Xu1,2, HU Xiaodong2, ZHAO Hongyang2, JU Dongying2,4
1.School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051, China
2.Research Center of Magnesium Alloy Casting and Rolling Technology, University of Science and Technology Liaoning, Anshan 114051, China
3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.Saitama Institute of Technology, Saitama 3690293, Japan
Cite this article: 

SUN He, CHEN Ming, CHENG Ming, WANG Ruixue, WANG Xu, HU Xiaodong, ZHAO Hongyang, JU Dongying. A Multi-scale Model for Elucidation of Recrystallization and Texture of Mg-Alloy Sheet by Warm-rolling Process. Chinese Journal of Materials Research, 2021, 35(5): 339-348.

Download:  HTML  PDF(11092KB) 
Export:  BibTeX | EndNote (RIS)      

The mechanism of recrystallization and texture evolution of Mg-alloy sheet was elucidated by means of an established multi-scale calculation model. First of all, the numerical calculation of asymmetric warm-rolling process was carried out by using finite element method, and the equivalent plastic strain and strain rate were obtained as the reference boundary parameters conditions. By introducing the hardening equation based on dislocation density evolution, the coupling calculation of the viscoplastic self-consistent (VPSC) model and cellular automata (CA) model were achieved. The stress and strain, as well as the dynamic recrystallization microstructure and deformation texture on the microscopic scale were obtained. Based on this method, the influence of strain rate on dynamic recrystallization microstructure variation during asymmetric warm-rolling was calculated. The microstructure of warm-rolled AZ31 Mg-alloy sheet prepared by different cooling conditions was experimentally verified by electron back-scattered diffraction (EBSD). The simulation results show that the grain can be refined by increasing the strain rate appropriately and the experimental results show that the weakening degree of the basal texture of the alloy sheet by air cooling after rolling is higher, which is beneficial to the enhancement of the deformation ability of the Mg-alloy sheet along its thickness.

Key words:  metallic materials      multi-scale model      asymmetric warm-rolling      dislocation density      Visco-Plastic Self-Consistent model      dynamic recrystallization     
Received:  04 September 2020     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China Youth Science Foundation Project(51305188);Liaoning Provincial Department of Science and Technology Doctor Initiated the Project(20170520313)
About author:  CHEN Ming, Tel: 13478045992, E-mail:

URL:     OR

Fig.1  Six-high warm-rolling mill
Density/kg·m-3Temperature/KThermal radiation

Young's modulus


Poisson's ratio

Specific heat

/J·(103 kg·℃)-1

Table 1  Material parameters in finite element simulation of AZ31 magnesium alloy
Fig.2  Finite element simulation calculation flow chart
Fig.3  FEM-CA Schematic diagram
Fig.4  Schematic diagram of equivalent plastic strain point location
Fig.5  Macroscopic plastic strain - yield stress curve
Fig.6  Relative activity of Slip and twinning



Deformation mode

Voce parameter


Compression twinning1205000
Tensile twinning551000
Table 2  Voce hardening parameter of Visco-Plastic Self-Consistent model
Table 3  Physical parameters of dynamic recrystallization simulation of AZ31 magnesium alloy
Fig.7  VPSC-DRX model flowchart based on dislocation density evolution
Fig.8  Recrystallization of AZ31 magnesium alloy simulates the microstructure of different strain (a)?ε=0.24; (b) ε=0.30; (c) ε=0.36; (d)?ε=0.42
Fig.9  Microstructure of AZ31 magnesium alloy with different strain rate was simulated by recrystallization (a)?ε˙=0.001; (b) ε˙=0.01; (c)?ε˙=0.05
Fig.10  Schematic diagram of sheet rolling direction
Fig.11  Microstructure of AZ31 magnesium alloy sheet under different treatment (a) rolling state (simulated result); (b) initial state (experimental result); (c) water-cooling treatment (experimental result); (d) air-cooling treatment (experimental result)
Fig.12  Misorientation angle distribution of AZ31 magnesium alloy sheet (a) initial state; (b) water-cooling treatment; (c) air-cooling treatment
Fig.13  Pole figure of different treatment methods for AZ31 magnesium alloy sheet (a) VPSC simulation result; (b) initial state; (c) water-cooling treatment; (d) air-cooling treatment
1 Chen S F, Song H W, Zhang S H, et al. Effect of shear deformation on plasticity, recrystallization mechanism and texture evolution of Mg-3Al-1Zn alloy sheet: Experiment and coupled finite element-VPSC simulation [J]. J. Alloys. Compd., 2019, 805: 138
2 Lebensohn R A, Tomé C. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys [J]. Acta. Metall. Mater., 1993, 41(9): 2611
3 Goetz R L, Seetharaman V. Modeling dynamic recrystallization using cellular automata [J]. Scr. Mater., 2003, 38: 405
4 Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta. Metall., 1981, 29: 1865
5 Cram D G, Fang X Y, Zurob H S, et al. The effect of solute on discontinuous dynamic recrystallization [J]. Acta. Mater., 2012, 60(18): 6390
6 Tang T, Zhou G W,LI Z H, et al. A polycrystal plasticity based thermo-mechanical-dynamic recrystallization coupled modeling method andits application to light weight alloys [J]. Int. J. Plast., 2019, 116: 159
7 Zhou G W, Li Z H, Li D Y,et al. Misorientation development in continuous dynamic recrystallization of AZ31B alloy sheet and polycrystal plasticity simulation [J]. Mater. Sci. Eng., A, 2018, 730: 438
8 Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta. Mater., 2001, 49: 1199
9 Shi T, Yu K, Li W X, et al. Hot-compression constitutive relation of as-cast AZ31 magnesium alloy [J]. Trans. Nonferrous. Met. Soc. China., 2007, 17: 336
10 Takuda H, Fujimoto H, Hatta N. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures [J]. J. Mater. Process. Technol., 1998, 80: 513
11 Wang Z T, Zhang S H, Qi G X, et al. Constitutive equation for hot deformation of AZ31 magnesium alloy [J].Chin. J. Nonferrous. Met., 2008, 18(11): 1977
王忠堂, 张士宏, 齐广霞等. AZ31镁合金热变形本构方程 [J]. 中国有色金属学报, 2008, 18(11): 1977
12 Molinari A, Tóth L. A self consistent viscoplastic model by finite element results [J]. Acta. Metall. Mater., 1994, 42(7): 2453
13 Lebensohn R A, Tomé C. A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals [J]. Mater. Sci. Eng., A, 1994, 175(1): 71
14 Choi S H, Kim D H, Seong B S. Simulation of strain-softening behaviors in an AZ31 Mg alloy showing distinct twin-induced reorientation before a peak stress [J]. Met. Mater. Int., 2009, 15: 239
15 Lin J B, Ren W J, Wang X Y. Research progress of structural evolution crystal plastic mechanical model of Magnesium alloys [J]. Material. Rev., 2016, 30(1): 102
林金保, 任伟杰, 王心怡. 镁合金织构演化晶体塑性力学模型的研究进展 [J]. 材料导报, 2016, 30(1): 102
16 Pandey A, Kabirian F, Hwang J H, et al. Mechanical responses and deformation mechanisms of an AZ31 Mg alloy sheet under dynamic and simple shear deformations [J]. Int. J. Plast., 2015, 68: 111
17 Beyerlein I J, Tomé C. A dislocation-based constitutive law for pure Zr including temperature effects [J]. Int. J. Plast., 2008, 24(5): 867
18 Capolungo L, Beyerlein I J, Kaschner G C, et al. On the interaction between slip dislocations and twins in HCP Zr [J]. Mater. Sci. Eng,. A, 2009, 513: 42
19 Yu H H, Xin Y C, Liu Q, et al. Hall-Petch relationship in Mg alloys [J]. Mater. Sci. Eng,. A, 2018, 34(2): 248
20 Ma Q, Li B, Whittington W R, et al. Texture evolution during dynamic recrystallization in a magnesium alloy at 450℃ [J]. Acta. Metall., 2014, 67: 102
21 Niu Y X, Le Q C, Ning F K, et al. Strain induced dynamic recrystallization nucleation of ZA21 magnesium alloy during compression process at low and medium temperatures [J]. J. Mater. Res. Technol., 2020, 9(1): 340
22 He Y, Zhang L W, Niu J, et al. Simulation of dynamic recrystallization process by cellular automata method [J].
Mater T.. Heat. Treat., 2005, 26(4): 120(何燕, 张立文, 牛静等. 元胞自动机方法对动态再结晶过程的模拟 [J]. 材料热处理学报, 2005, 26(4): 120
23 Chen X W, WANG J Y, Yang X Q, et al. Thermal deformation behavior and dislocation density evolution of Cr8 alloy steel [J].
Jilin J.. U.: Techno. Ed., 2020, 50: 91(陈学文, 王继业, 杨喜晴等. Cr8合金钢热变形行为及位错密度演变规律 [J]. 吉林大学学报: 工学版, 2020, 50: 91
24 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta. Mater., 2003, 51: 2685
25 Chen M, Hu X D, Zhao H Y, et al. Recrystallization microstructure prediction of a hot-rolled AZ31 magnesium alloy sheet by using the cellular automata method [J]. Math. Probl. Eng., Article ID1484098, Volume 2019
26 Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization [J]. Acta. Mater., 2001, 49(16): 3163
27 Lu Y, Zhang L W, Deng X H, et al. Cellular automata simulation of dynamic recrystallization of pure copper [J]. Acta. Metall. Sin., 2008, 44(3): 292
卢瑜, 张立文, 邓小虎等. 纯铜动态再结晶过程的元胞自动机模拟 [J]. 金属学报, 2008, 44(3): 292
28 Zhou G W. Experimental and theoretical research on thermoplastic deformation mechanism and forming limit of AZ31B magnesium alloy sheet [D]. Shanghai: Shanghai Jiao Tong University, 2016(周国伟. AZ31B镁合金板材温热塑性变形机制与成形极限的实验与理论研究 [D]. 上海: 上海交通大学, 2016
29 Zhou G W, Jain Mukesh K., Wu P D, et al. Experiment and crystal plasticity analysis on plastic deformation of AZ31B Mg alloy sheet under intermediate temperatures: How deformation mechanisms evolve [J]. Int. J. Plast., 2016, (79): 19
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!