Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (5): 330-338    DOI: 10.11901/1005.3093.2020.314
ARTICLES Current Issue | Archive | Adv Search |
Effect of Long-term Aging on Properties of Low Expansion Superalloy GH2909
XU Xiong1,2, LI Zhao2, WAN Zhipeng2, WEI Kang2, WANG Tao2(), ZHANG Xinfang1()
1.School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Cite this article: 

XU Xiong, LI Zhao, WAN Zhipeng, WEI Kang, WANG Tao, ZHANG Xinfang. Effect of Long-term Aging on Properties of Low Expansion Superalloy GH2909. Chinese Journal of Materials Research, 2021, 35(5): 330-338.

Download:  HTML  PDF(39282KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and mechanical properties of a new type of low expansion superalloy GH2909 after long time exposure up to 2000 h at 550℃, 600℃ and 650℃ respectively were investigated. The results show that the alloy had a good microstructure stability and high mechanical properties, namely a slightly increase in strength and little change in plasticity, after aging at 550℃ and 600℃ for 2000 h. However, after 2000 h aging at 650℃ the mechanical properties of the alloy dropped significantly: the strength at room temperature and high temperature decreased significantly, and the plasticity decreased at room temperature, especially the reduction of area at room temperature decreased sharply, but the plasticity increased significantly at high temperature. This is mainly due to the precipitation of a large number of needle-like ε/ε″ phases that penetrate the grains and have "Widmanstatten structure"-like morphology in the microstructure of the alloy during the long-term aging process at 650℃, resulting in a significant reduction in the quantity of strengthening phase γ′ phases. At the same time, the stability of γ′ phase decreases at 650℃ and the size of γ′ phase increases significantly.

Key words:  metallic materials      GH2909 superalloy      microstructure      long-time aging      mechanical properties     
Received:  27 July 2020     
ZTFLH:  TG113  
Fund: Key Laboratory Fund Project(6142903190205);National Natural Science Foundation of China(U1860206);Fundamental Scientific Research Business Expenses of Central Universities(FRF-TP-20-02B)
About author:  WANG Tao, Tel: 18810885120, E-mail: wangtao8206@163.com
ZHANG Xinfang, Tel: 17310069802, E-mail: xfzhang@ustb.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.314     OR     https://www.cjmr.org/EN/Y2021/V35/I5/330

ElementsCNb+TaSiCoTiCrNiFe
Composition0.0124.9830.38013.51.470.04938.6Bal.
Table 1  Chemical composition (mass fraction/%) of the alloy
Fig.1  Schematic diagram of heat treatment steps of GH2909 alloy
Fig.2  Tensile properties of GH2909 alloy after aging at room temperature for 2000 h at different temperatures, σb is the tensile strength at room temperature, σ0.2 is the yield strength, δ is the elongation and ψ is the reduction of area
Fig.3  Tensile properties of GH2909 alloy after aging at thigh temperature (540℃) for 2000 h at different temperature, σb is the tensile strength at 540℃, σ0.2 is the yield strength, δ is the elongation and ψ is the reduction of area
Fig.4  Microstructure of GH2909 alloy after aging at different temperature for 2000 h (a) standard heat treatment, (b) 550℃, (c) 600℃, (d) 650℃
Fig.5  Morphology of“black crystal”after aging of GH2909 alloy at different temperature (a) standard heat treatment;(b) 550℃;(c) 600℃;(d) 650℃
Fig.6  Change of ε/ε″ phase after aging at different temperature for 2000 h (a) standard heat treatment; (b) 550℃; (c) 600℃; (d) 650℃
Fig.7  Change of γ′ phase of GH2909 alloy after aging for 2000 h at different temperature (a) standard heat treatment; (b) 550℃; (c) 600℃; (d) 650℃
Fig.8  Microstructure of black crystal
Fig.9  Fractography of GH2909 alloy at room temperature after aging for 2000 h at different temperatures (a), (b), (c) standard heat treatment;(d), (e), (f) 650℃
Fig.10  SEM morphology longitudinal section at room temperature after long-term aging at 650℃ for 2000 h
Fig.11  The γ′ phase“depleted area”around the ε/ε″ phase
Fig.12  Fractography of GH2909 alloy at 540℃ after aging for 2000 h at different temperatures (a), (b), (c) standard heat treatment; (d), (e), (f) 650℃
1 Zhang S. W.. Development and Application of Low Expansion Superalloy [J]. Aviation Manufacturing Engineering, 1994, 000(009): 5
张绍维. 低膨胀高温合金的发展与应用 [J]. 航空制造工程, 1994, 000(009): 5
2 Han G. W., Zhang Y. Y.. Variations in microstructure and properties of GH783 alloy after long term thermal exposure, Materials Science and Engineering A, 2006, 441: 253
3 Sun Y. R., Sun W. R., Hou G. C., et al. Influence of phosphorus on oxidation behavior of low thermal expansion superalloy IN909 at 650°C, Transactions of Nonferrous Metals Society of China, 2006, 16: 1958
4 Zhu J. H., Geng S. J., Ballard D. A.. Evaluation of several lowthermal expansion Fe-Co-Ni alloys as interconnect for reduced-temperature solid oxide fuel cell, International Journal of Hydrogen Energy, 2007, 32: 3682
5 Wang C, Cai Y, Hu C, et al. Morphology, microstructure, and mechanical properties of laser-welded joints in GH909 alloy [J]. Journal of Mechanical ence and Technology, 2017, 31(5): 2497
6 Deng B., Han G. W., Feng D.. Development of low-expansion superalloy and its application in aerospace industry [J]. Journal of Aeronautical Materials, 2003, 23: 244
邓波, 韩光炜, 冯涤. 低膨胀高温合金的发展及在航空航天业的应用 [J]. 航空材料学报, 2003, 23: 244
7 SMITH D F, WENSCHHOF D E. A Survey of Progress in Controlled-Expansion [A]. Age-Hardenable Nickel-Iron-Cobalt Alloys [R]. The TMS-AIME Fall Meeting.
Detroit. Michigan. Oct. 18~21, 1971
8 Inco Alloys International, INCOLOY alloy 907 [R]. Publication No. IAI-22. 1987
9 Heck K. A., Smith D. F., Smith J. S., et al. The physical metallurgy of silicon-containing low expansion superalloy. Superalloys, 1988: 151
10 Heck, Smith J. S., Smith R.. Inconel Alloy 783: An Oxidation-Resistant, Low Expansion Superalloy for Gas Turbine Applications [J]. Journal of Engineering for Gas Turbines and Power, 1998, 120: 363
11 Zhang S. L.. Introduction to HAYNES242 alloy [J]. Special Steel Technology, 2018,
v 24; No. 94(01): 37(张菽浪. HAYNES242合金简介 [J]. 特钢技术, 2018,
13 24; No. 94(01): 37
12 Liu T, Yan F, Liu S, et al. Microstructure and mechanical properties of laser-arc hybrid welding joint of GH909 alloy [J]. Optics & Laser Technology, 2016, 80: 56
15 Ming Luo, Haizhen Li, et al. On the Machinability and Surface Finish of Superalloy GH909 Under Dry Cutting Conditions. [J]. Materials Research, 2018
14 Yan F, Hu C, Zhang X, et al. Influence of heat input on HAZ liquation cracking in laser welded GH909 alloy [J]. Optics & Laser Technology, 2017, 92: 44
17 Balachander M. A., Vishwakarma K., Richards N. L.. Overaged metallography of alloy 909, a low coefficient of expansion superalloy [J]. Material Science and Technology, 2012, 28(3): 380
16 Zhao Y. X., Zhang S. W.. Long Time Thermal Stability of Superalloy GH909 at 700℃ [J]. Journal of Aeronautical Materials, 2006, 26(3): 56
赵宇新, 张绍维. GH909合金在700℃长期时效稳定性研究 [J].航空材料学报, 2006, 26(3): 56
19 Zhao Y. X., Zhang S. W.. A study on microstructure and mechanical properties of GH909 after long time ageing [J]. Journal of Aeronautical Materials, 2000, 20: 6
赵宇新, 张绍维. GH909合金长期时效后组织和性能的研究 [J]. 航空材料学报, 2000, 20: 6
18 Balachander M. A., Vishwakarma K., Tang B., et al. Microstructure characterization of solution treated(ST) and solution treated and aged (STA) Incoloy 909. Material Science and Technology, 2011, 27(4): 805
21 Guo X., Kusabirakiand S K.. Saji, Intragranular precipitates in Incoloy alloy909, Scripta Mater., 44(2001), No. 1, p. 55
20 Yao Z H, Wu S C, Dong J X, et al. Constitutive behavior and processing maps of low-expansion GH909 superalloy [J]. 矿物冶金与材料学报: 英文版, 2017(24): 432
23 Yan F., Li R. Y., Li J. M., et al. The effect of aging heat treatment on microstructure and mechanical properties of laser welded joints of alloy GH909, Mater. Sci. Eng. A, 598(2014), p. 62
22 Ma L. Z., Chang K. M.. Effects of different metallurgical processing on microstructures and mechanical properties of Inconel alloy 783, J. Mater. Eng. Perform., 13(2004), No. 1, p. 32
25 Zhong-Shuai H, Jin-Feng D, Jun L, et al. Evolution of In783 alloy in microstructure and properties enduring different service times [J]. Rare Metals, 2018
24 Li Z., Wang T., Xiong X., etc. Structure analysis on stress rupture notch sensitivity for GH2909 alloy forgings [J]. Heat Treatment of Metals, 2020, 45(05): 17
李钊, 王涛, 徐雄等. GH2909合金锻件持久缺口敏感性组织分析 [J]. 金属热处理, 2020, 45(05): 17
27 Fan Z. Y., Li X. M., Song C. L., etc. Effect of Si Content on Properties of GH2909 Alloy [J]. Thermal Processing Technology, 2017, 046(014): 107
樊照远, 李许明, 宋传荣等. Si含量对GH2909合金性能的影响 [J]. 热加工工艺, 2017, 046(014): 107
26 Bataev I. A., Bataev A. A., Burov V. G., et al. Structure of Widmanstatten crystals of ferrite and cementite. 2008, 38(8): 684
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!