Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (5): 321-329    DOI: 10.11901/1005.3093.2021.159
ARTICLES Current Issue | Archive | Adv Search |
Prepration and Mechanical Properties of Ultrafine-grained 6061 Al-alloy by Friction Stir Process
WANG Beibei1,2, LIU Yandong1, XUE Peng2(), NI Dingrui2, XIAO Bolv2, MA Zongyi2
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

WANG Beibei, LIU Yandong, XUE Peng, NI Dingrui, XIAO Bolv, MA Zongyi. Prepration and Mechanical Properties of Ultrafine-grained 6061 Al-alloy by Friction Stir Process. Chinese Journal of Materials Research, 2021, 35(5): 321-329.

Download:  HTML  PDF(6436KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

6061 Al-alloy plates were prepared by friction stir process (FSP) with conventional air cooling and additional water cooling, and the microstructure and mechanical properties of the FSP 6061 Al-alloys were investigated. Results show that the processed zone was characterized as equiaxed uniform ultrafine-grained (UFG) microstructure with low dislocation density and high fraction of high angle grain boundaries (>70%), and the average grain size was refined to 200 nm in the condition of additional water cooling. Spherical and rod-like precipitates were observed in the FSP 6061 Al-alloy. The applying of additional water cooling suppressed the growth of precipitates, led to the solid solution of some elements in the matrix, and reduction of precipitate size and space. The FSP 6061 Al-alloy prepared with additional water cooling exhibited higher effect of grain boundary strengthening and precipitation strengthening, resulting in a high ultimate tensile strength of 505 MPa, which was 55% higher than that of the 6061 Al-alloy of peak aging state.

Key words:  metallic materials      ultrafine grain material      friction stir processing      mechanical properties      strengthening mechanism     
Received:  02 March 2021     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China (Nos. 52071317 & U1760201) and Youth Innovation Promotion Association of the Chinese Academy of Sciences(2017236)
About author:  XUE Peng, Tel: (024)23971752, E-mail: pxue@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.159     OR     https://www.cjmr.org/EN/Y2021/V35/I5/321

MgSiFeMnCuZnAl
1.080.590.200.200.210.25Bal.
Table 1  Chemical compositions of 6061 Al-T6 sheets (mass fraction/%)
Fig.1  Schematic illustration of FSP and the sample locations for tensile tests and microstructure observations
Fig.2  Cross-sectional macrostructure of FSP 6061 Al (a) A-300, (b) W-300
Fig.3  EBSD maps of A-300 (a), W-300 (b), and distribution of grain boundary misorientation angles of A-300 (c), W-300 (d)
Fig.4  Typical TEM microstructure of base material and FSP 6061 Al (a) base material, (b) HRTEM of precipitation in base material, (c) A-300, (d) W-300
Fig.5  Magnified TEM image of W-300 sample
Fig.6  Tensile engineering stress-strain curves (a) and work hardening rate (b) of base material and FSP 6061 Al
Fig.7  Tensile fractographies (a) A-300, (b) magnified graph of A-300, (c) W-300, (d) magnified graph of W-200
Fig.8  Ultimate tensile strength of 6xxx Al alloy prepared by different methods[27~33]
Fig.9  Various strengthening mechanisms contributed to the yield strengths of A-300 and W-300 samples
1 Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
2 Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog. Mater. Sci., 2000, 45: 103
3 Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science [J]. Acta Mater., 2013, 61: 782
4 An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1
5 Zhilyaev A, Langdon T. Using high-pressure torsion for metal processing: fundamentals and applications [J]. Prog. Mater. Sci., 2008, 53: 893
6 Malekjani S, Hodgson P D, Cizek P, et al. Cyclic deformation response of ultrafine pure Al [J]. Acta Mater., 2011, 59: 5358
7 Chen Y J, Wang Q D, Peng J G, et al. Research and development prospects of ultrafine-grained materials fabricated by severe plastic deformation [J]. Mater. Rev., 2005, 19(4): 77
陈勇军, 王渠东, 彭建国等. 大塑性变形制备细晶材料的研究、开发与展望 [J]. 材料导报, 2005, 19(4): 77
8 Zhao X, Gao Y W, Nan Y, et al. Sever plastic deformation methods for bulk nanostructured materials [J]. Mater. Rev., 2003, 17(12): 5
赵 新, 高聿为, 南 云等. 制备块体纳米/超细晶材料的大塑性变形技术 [J]. 材料导报, 2003, 17(12): 5
9 Chen F F, Huang H J, Xue P, et al. Research progress on microstructure and mechanical properties of friction stir processed ultrafine-grained materials [J]. Chin. J. Mater. Res., 2018, 32: 1
陈菲菲, 黄宏军, 薛鹏等. 搅拌摩擦加工超细晶材料的组织和力学性能研究进展 [J]. 材料研究学报, 2018, 32: 1
10 Xue P, Zhang X X, Wu L H, et al. Research progress on friction stir welding and processing [J]. Acta Metall. Sin., 2016, 52: 1222
薛鹏, 张星星, 吴利辉等. 搅拌摩擦焊接与加工研究进展 [J]. 金属学报, 2016, 52: 1222
11 Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, 50R: 1
12 Ma Z Y. Friction stir processing technology: a review [J]. Metall. Mater. Trans. A, 2008, 39: 642
13 Yang M, Li C B, Liu S D, et al. Effect of artificial aging on microstructure and mechanical properties of friction stir welded joint of 7003/7046 al-alloys [J]. Chin. J. Mater. Res., 2020, 34: 495
杨梦, 李承波, 刘胜胆等. 人工时效对7003/7046铝合金搅拌摩擦焊接头组织和力学性能的影响 [J]. 材料研究学报, 2020, 34: 495
14 Zhang X M, He G Z, Wang B B, et al. Influence of oxide film on fatigue property of friction stir welded 6082 Al alloy [J]. Chin. J. Mater. Res., 2019, 33: 299
张欣盟, 何广忠, 王贝贝等. 氧化膜对6082铝合金搅拌摩擦焊接头疲劳性能的影响 [J]. 材料研究学报, 2019, 33: 299
15 Zhao H L, Pan Q, Qin Q D, et al. Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy [J]. Mater. Sci. Eng. A, 2019, 751: 70
16 Sauvage X, Dédé A, Muñoz A C, et al. Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys [J]. Mater. Sci. Eng. A, 2008, 491: 364
17 Chen Y C, Feng J C, Liu H J. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys [J]. Mater. Charact., 2009, 60: 476
18 Sato Y S, Urata M, Kokawa H. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063 [J]. Metall. Mater. Trans. A, 2002, 33: 625
19 Cui L, Yang X Q, Zhou G, et al. Characteristics of defects and tensile behaviors on friction stir welded AA6061-T4 T-joints [J]. Mater. Sci. Eng. A, 2012, 543: 58
20 Xue P, Xiao B L, Ma Z Y. Achieving ultrafine-grained structure in a pure nickel by friction stir processing with additional cooling [J]. Mater. Des., 2014, 56: 848
21 Wang B B, Chen F F, Liu F, et al. Enhanced mechanical properties of friction stir welded 5083al-H19 joints with additional water cooling [J]. J. Mater. Sci. Technol., 2017, 33: 1009
22 Zeng X H, Xue P, Wang D, et al. Realising equal strength welding to parent metal in precipitation-hardened Al-Mg-Si alloy via low heat input friction stir welding [J]. Sci. Technol. Weld. Join., 2018, 23: 478
23 Chrominski W, Lewandowska M. Precipitation phenomena in ultrafine grained Al-Mg-Si alloy with heterogeneous microstructure [J]. Acta Mater., 2016, 103: 547
24 Ninive P H, Strandlie A, Gulbrandsen-Dahl S, et al. Detailed atomistic insight into the β" phase in Al-Mg-Si alloys [J]. Acta Mater., 2014, 69: 126
25 Andersen S J, Zandbergen H W, Jansen J, et al. The crystal structure of the β'' phase in Al-Mg-Si alloys [J]. Acta Mater., 1998, 46: 3283
26 Sauvage X, Bobruk E V, Murashkin M Y, et al. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys [J]. Acta Mater., 2015, 98: 355
27 Mohamed I F, Lee S, Edalati K, et al. Aging behavior of Al 6061 alloy processed by high-pressure torsion and subsequent aging [J]. Metall. Mater. Trans. A, 2015, 46: 2664
28 Venkatesh C V, Raman S G S, Uday C. Low cycle fatigue behaviour of Al-Mg-Si Alloy AA6061 processed by equal channel angular pressing [J]. Adv. Mat. Res., 2012, 463-464: 97
29 Rao P N, Singh D, Brokmeier H G, et al. Effect of ageing on tensile behavior of ultrafine grained Al 6061 alloy [J]. Mater. Sci. Eng. A, 2015, 641: 391
30 Chrominski W, Kulczyk M, Lewandowska M, et al. Precipitation strengthening of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusion [J]. Mater. Sci. Eng. A, 2014, 609: 80
31 Roven H J, Nesboe H, Werenskiold J C, et al. Mechanical properties of aluminum alloys processed by SPD: Comparison of different alloy systems and possible product areas [J]. Mater. Sci. Eng. A, 2005, 410-411: 426
32 Rezaei M R, Toroghinejad M R, Ashrafizadeh F. Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy [J]. J. Mater. Process. Technol., 2011, 211: 1184
33 Kim J K, Jeong H G, Hong S I, et al. Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after equal channel angular pressing [J]. Scr. Mater., 2001, 45: 901
34 Chrominski W, Wenner S, Marioara C D, et al. Strengthening mechanisms in ultrafine grained Al-Mg-Si alloy processed by hydrostatic extrusion-influence of ageing temperature [J]. Mater. Sci. Eng. A, 2016, 669: 447
35 Sha G, Tugcu K, Liao X Z, et al. Strength, grain refinement and solute nanostructures of an Al-Mg-Si alloy (AA6060) processed by high-pressure torsion [J]. Acta Mater., 2014, 63: 169
36 Zeng X H, Xue P, Wu L H, et al. Achieving an ultra-high strength in a low alloyed Al alloy via a special structural design [J]. Mater. Sci. Eng. A, 2019, 755: 28
37 Yu C Y, Kao P W, Chang C P. Transition of tensile deformation behaviors in ultrafine-grained aluminum [J]. Acta Mater., 2005, 53: 4019
38 Kamikawa N, Huang X X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed [J]. Acta Mater., 2009, 57: 4198
39 Kamikawa N, Hirochi T, Furuhara T. Strengthening mechanisms in ultrafine-grained and sub-grained high-purity aluminum [J]. Metall. Mater. Trans. A, 2019, 50: 234
40 Hu T, Ma K, Topping T D, et al. Precipitation phenomena in an ultrafine-grained Al alloy [J]. Acta Mater., 2013, 61: 2163
41 Bardel D, Perez M, Nelias D, et al. Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy [J]. Acta Mater., 2014, 62: 129
42 Myhr O R, Grong Ø, Andersen S J. Modelling of the age hardening behaviour of Al-Mg-Si alloys [J]. Acta Mater., 2001, 49: 65
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!