Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (3): 184-192    DOI: 10.11901/1005.3093.2020.239
ARTICLES Current Issue | Archive | Adv Search |
Properties and Deformation Mechanism of Aged Fe-Mn-Al-C Steel
WANG Ping(), GUO Aimin, HOU Qingyu, GUO Yunxia, HUANG Zhenyi(), GUANG Jianfeng
School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243000, China
Cite this article: 

WANG Ping, GUO Aimin, HOU Qingyu, GUO Yunxia, HUANG Zhenyi, GUANG Jianfeng. Properties and Deformation Mechanism of Aged Fe-Mn-Al-C Steel. Chinese Journal of Materials Research, 2021, 35(3): 184-192.

Download:  HTML  PDF(18031KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of aging temperature on austenite grain size and mechanical properties of Fe-30Mn-9Al-0.9C-0.45Mo steel were investigated by OM, SEM, XRD, EBSD and TEM. The results show that the aging treatment has a great influence on the microstructure and properties of Fe-30Mn-9Al-0.9C-0.45Mo steel. After aging treatment at 450℃ the tensile strength of the steel is 863 MPa, the elongation after fracture is 56.1%, and the strong plastic product is 48.4 GPa·%, indicating a significant improvement compared with the solid solution treated ones; After aging temperature at 500℃ the amount of the dot-shaped κ-carbide precipitates increases , the austenite grains grow significantly with the increase of ageing temperature and the yield strength and tensile strength increase. During the aging process at 550℃ DO3→B2 continuous transformation occurred, and the yield strength of the steel increased, but the plasticity decreased significantly. After tensile deformation high density dislocation wall and microstrip structure can be observed, which are plane slip characteristics.

Key words:  metallic materials      Fe-Mn-Al-C steel      aging temperature      austenite grain      microband     
Received:  17 June 2020     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51674004)
About author:  WANG Ping, Tel: (0555)2311571, E-mail: wangping@ahut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.239     OR     https://www.cjmr.org/EN/Y2021/V35/I3/184

Fig.1  Optical micrographs of the experimental steel after solution treated at different aging temperatures for 12 h (a) solid solution state; (b) aged at 450℃; (c) aged at 500℃; (d) aged at 550℃
Fig.2  grain size distribution of austenite in experimental steel after aging at different temperatures (a) aged at 450℃; (b) aged at 500℃; (c) aged at 550℃
Fig.3  EBSD characterizes of the phase distribution of the experimental steel after aging at different temperature (a) 450℃; (b) 500℃; (c) 550℃
Fig.4  Mass fraction of austenite and ferrite and XRD spectra at different aging temperatures
Fig.5  Morphology of ferrite precipitates and XRD spectra of steel aged at 550 ℃
Temperature/℃Rm/MPaRp0.2/MPaElongation/%Rm×Elongation/GPa·%
Solid solution1155---
45086356756.148.4
50087357555.048.0
55086671310.18.7
Table 1  Mechanical properties of experimental steel after aging for 12 h at different temperatures
Fig.6  engineering stress-strain curve and mechanical properties of aged steel with aging temperature (a) engineering stress-strain curves; (b) Rm, elongation, Rp0.2, and Rm×elongation
Fig.7  Tensile fracture morphology of experimental steel (a) solid solution; (b) aged at 450℃; (c) aged at 500℃; (d) aged at 550℃
Fig.8  KAM diagram of experimental steel after aging at different temperatures (a) aged at 450℃; (b) aged at 500℃; (c) aged at 550℃
Aging temperatureKAM distributionAverageDislocation
/℃0°~1°1°~2°2°~3°3°~4°4°~5°KAM/°density/m-2
4500.1440.3050.5830.6270.3090.2476.12×1015
5000.0100.1400.6110.7350.4650.3921.95×1016
5500.0210.4830.6010.4580.1290.2125.43×1015
Table 2  Distribution of KAM, average KAMvalue and dislocation density of experimental steel after tensile deformation
Fig.9  TEM image of dislocation structure of experimental steel after tensile deformation (a) microband; (b) dislocation wall
1 Yang Q, Cong Y, Wang J F, et al. State of knowledge on lightweight steels (Part II)——Ferrite-austenite dual-phase lightweight steels and austenitic lightweight steels [J]. Bao-Steel Technol., 2015, (4): 1
杨旗, 丛郁, 王俊峰等. 轻质钢的研究进展(二)——铁素体-奥氏体双相轻质钢和奥氏体轻质钢 [J]. 宝钢技术, 2015, (4): 1
2 Zhang X F, Li J X, Wan Y X, et al. Research progress of ordered precipitates in low-density steels [J]. Mater. Rep., 2019, 33: 3979
章小峰, 李家星, 万亚雄等. 低密度钢中有序析出相的研究进展 [J]. 材料导报, 2019, 33: 3979
3 Zambrano O A, Valdés J, Aguilar Y, et al. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation [J]. Mater. Sci. Eng. A, 2017, 689: 269
4 Zhao C, Song R B, Zhang L F, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel [J]. Mater. Des., 2016, 91: 348
5 Zheng W S, Lu X G, Mao H H, et al. Thermodynamic modeling of the Al-C-Mn system supported by ab initio calculations [J]. Calphad, 2018, 60: 222
6 Song W W, Zhang W, von Appen J, et al. κ-Phase formation in Fe-Mn-Al-C austenitic steels [J]. Steel Res. Int., 2015, 86: 1161
7 Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels [J]. Mater. Sci. Eng. A, 2016, 652: 69
8 Zhang X L, Hou H F, Liu T, et al. Microstructure and mechanical properties of a novel heterogeneous cold-rolled medium Mn steel with high product of strength and ductility [J]. Chin. J. Mater. Res., 2019, 33: 927
张喜亮, 侯华峰, 刘涛等. 一种新型高强塑积异质冷轧中锰钢的力学性能 [J]. 材料研究学报, 2019, 33: 927
9 Gao X T, Zhao A M, Zhang Y. Mechanical property and precipitation of 900 MPa grade hot-rolled TRIP steel [J]. Chin. J. Mater. Res., 2018, 32: 662
高绪涛, 赵爱民, 张元. 900 MPa级热轧TRIP钢的性能特征 [J]. 材料研究学报, 2018, 32: 662
10 Yang F Q, Song R B, Sun T, et al. Microstructure and mechanical proper-ties of Fe-Mn-Al light-weight high strength steel [J]. Acta Metall. Sin., 2014, 50: 897
杨富强, 宋仁伯, 孙挺等. Fe-Mn-Al轻质高强钢组织和力学性能研究 [J]. 金属学报, 2014, 50: 897
11 Zambrano O A. Stacking fault energy maps of Fe-Mn-Al-C-Si steels: effect of temperature, grain size, and variations in compositions [J]. J. Eng. Mater. Technol., 2016, 138: 041010
12 Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory [J]. Acta Mater., 2014, 68: 238
13 Lee S I, Cho Y, Hwang B. Effect of grain size on the tensile properties of an austenitic high-manganese steel [J]. Korean J. Mater. Res., 2016, 266: 325
14 Saha R, Ueji R, Tsuji N. Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel [J]. Scr. Mater., 2013, 68: 813
15 Tian Y Z, Bai Y, Chen M C, et al. Enhanced strength and ductility in an ultrafine-grained Fe-22Mn-0.6C austenitic steel having fully recrystallized structure [J]. Metall. Mater. Trans., 2014, 45A: 5300
16 Yan Z F, Wang D H, He X L, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect [J]. Mater. Sci. Eng. A, 2018, 723: 212
17 Yoo J D, Hwang S W, Park K T. Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel [J]. Mater. Sci. Eng. A, 2009, 508: 234
18 Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng. A, 2008, 496: 417
19 Peng X, Zhu D Y, Hu Z M, et al. Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels: effect of Cu addition [J]. Mater. Des., 2013, 45: 518
20 Lehnhoff G R, Findley K O, De Cooman B C. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel [J]. Scr. Mater., 2014, 92: 19
21 Shterner V, Timokhina I B, Beladi H. The correlation between stacking fault energy and the work hardening Behaviour of High-Mn twinning induced plasticity steel tested at various temperatures [J]. Adv. Mater. Res., 2014, 922: 676
22 Park K T, Hwang S W, Son C Y, et al. Effects of heat treatment on microstructure and tensile properties of a Fe-27Mn-12Al-0.8C low-density steel [J]. JOM, 2014, 66: 1828
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!