Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (3): 175-183    DOI: 10.11901/1005.3093.2020.180
REVIEWS Current Issue | Archive | Adv Search |
Structural Coloration of Photonic Crystals Based On Self-assembly of Colloid Microspheres
LI Zhuang3, XU Qiujie2, LIU Guojin1,3(), ZHANG Yunxiao1, ZHOU Lan1, SHAO Jianzhong1
1.College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
2.School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
3.Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
Cite this article: 

LI Zhuang, XU Qiujie, LIU Guojin, ZHANG Yunxiao, ZHOU Lan, SHAO Jianzhong. Structural Coloration of Photonic Crystals Based On Self-assembly of Colloid Microspheres. Chinese Journal of Materials Research, 2021, 35(3): 175-183.

Download:  HTML  PDF(9545KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper reviewed the recent progress of structural coloration of photonic crystals based on self-assembly of colloid microspheres. Firstly, photonic crystals and the corresponding structural coloration theory were simply introduced, then the different self-assembly methods of constructing photonic crystals with colloid microspheres as basic structural elements were presented. Characterization methods for the structural coloration and the stability enhancement of photonic crystals are further discussed, finally the difficulties encountered in the preparation of photonic crystals via self-assembly of colloid microspheres, and the future development direction were also mentioned.

Key words:  review      photonic crystals      bionic      structural colors      colloidal microspheres      structural elements      self-assembly     
Received:  22 May 2020     
ZTFLH:  O734  
Fund: National Natural Science Foundation of China(52003242);Zhejiang Natural Science Foundation Project(LQ19E030022);Zhejiang Sci-Tech University Scientific Research Fund Project(18012212-Y);Zhejiang Sci-Tech University 2020 Undergraduate Science and Technology Innovation Program Project
About author:  LIU Guojin, Tel: 15757157466, E-mail: guojin900618@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.180     OR     https://www.cjmr.org/EN/Y2021/V35/I3/175

Fig.1  Schematic diagram of photonic crystal structure color development
Fig.2  Schematic diagram of gravity sedimentation (a) and photo of photonic crystal color film (b)
Fig.3  Schematic diagram of vertical deposition method (a) and photo of double-sided coloring of the substrate (b)
Fig.4  Schematic diagram of centrifugal deposition method (a) and photo of photonic crystal sheet (b)
Fig.5  Schematic diagram of electrophoretic deposition method (a) and photo of structural color fiber (b)
Fig.6  Schematic diagram of screen printing (a) and photo of photonic crystal pattern (b)
Fig.7  Schematic diagram of digital printing method (a) and photo of photonic crystal pattern (b)
Fig.8  Schematic diagram of the inhibition process of the "coffee ring" effect
Fig.9  Schematic diagram of measuring photonic crystal by multi-angle spectrophotometer
Fig.10  Photos of photonic crystal films (a) and schematic diagrams of photonic crystal chips under different observation angles (b)
Fig.11  Schematic diagram of the product structure
1 Yi C H, Tan X D, Bie B H, et al. Practical and environment-friendly indirect electrochemical reduction of indigo and dyeing [J]. Sci. Rep-UK, 2020, 10(1): 183
2 Xu B B, Li Y Z, Song P, et al. Photoactive layer based on t-shaped benzimidazole dyes used for solar cell: from photoelectric properties to molecular design [J]. Sci. Rep-UK, 2017, 7(1): 911
3 Ru J D, Qian X R, Wang Y. Low-salt or salt-free dyeing of cotton fibers with reactive yyes using liposomes as dyeing/level-dyeing promotors [J]. Sci. Rep-UK, 2018, 8(1): 344
4 Barrera-patiño C P, Vollet-filho J D, Teixeira-rosa R G, et al. Photonic effects in natural nanostructures on morpho cypris and greta oto butterfly wings [J]. Sci. Rep-UK, 2020, 10(1): 457
5 Guo D Y, Chen C W, Li C C, et al. Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction [J]. Nat. Mater., 2020, 19(8): 94
6 Zhang J, Meng Z J, Liu J, et al. Spherical colloidal photonic crystals with selected lattice plane exposure and enhanced color saturation for dynamic optical displays [J]. ACS Appl. Mater. Inter., 2019, 11(45): 42629
7 Petrova I, Konopsky V, Nabiev I, et al. Label-free flow multiplex biosensing via photonic crystal surface mode detection [J]. Sci. Rep-UK, 2019, 9(1): 669
8 Chen X, Xia L, Li C. Surface plasmon resonance sensor based on a novel d-shaped photonic crystal fiber for low refractive index detection [J]. IEEE Photonics J., 2018, 10(1): 1
9 Niu W B, Zhang L L, WANG Y P, et al. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management [J]. ACS Appl. Mater. Inter., 2019, 11(35): 32261
10 Yavuza1G, Zilleb A, Seventekin N,et al. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals [J]. Carbohyd. Polym., 2018, 193:343
11 Dalmis R, Birlik I, Azem N F A, et.al. Modification of the sedimentation method for PMMA photonic crystal coatings [J]. Colloid Surface A., 2019, 577: 194
12 Przybylski D, Patela S. Modelling of a two-dimensional photonic crystal as an antireflection coating for optoelectronic applications [J]. OPTO-electron. Rev., 2019, 27(1): 79
13 Kim S, Lee S Y, Yang S, et al. Self-assembled colloidal structures for photonics [J]. NPG Asia Mater., 2011, 3(1): 25
14 Chen C T, Pedrini J, Gaulding E A, et al. Very high refractive index transition metal dichalcogenide photonic conformal coatings by conversion of ALD metal oxides [J]. Sci. Rep-UK., 2019, 9(1): 214
15 Liu Y, Hu J, Wu Z H. Fabrication of coatings with structural color on a wood surface [J]. Coatings, 2020, 10(1): 32
16 Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett, 1987, 58(20): 2059
17 John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58(23): 2486
18 Keskin O.Y, Dalmis R, Bilbirlik I,et al. Comparison of the effect of non-metal and rare-earth element doping on structural and optical properties of CuO/TiO2 one-dimensional photonic crystals [J]. J. Alloy. Compd., 2020, 817(C): 153262
19 Segovia-chaves F, Vinck-posada H, A.Gómez E. Superconducting one dimensional photonic crystal with coupled semiconductor defects [J]. Optik, 2020, 209: 164572
20 Ge D H, Li J P, Ma C, et al. Effect of windmill-like-shaped defect on tm photonic band gaps of two-dimensional square-lattice photonic crystals [J]. Results Phys., 2020, 16: 102879
21 Rezaei B, Giden I, Zakerhamidi M S, et al. Two-dimensional hybrid photonic crystal with graded low-index using a nonuniform voltage [J]. Z. Naturforsch. A, 2019, 75(1): 65
22 Wang J Y, Yuan Y C, Zhu H, et al. Three-dimensional macroporous photonic crystal enhanced photon collection for quantum dot-based luminescent solar concentrator [J]. Nano Energy, 2020, 67: 104217
23 Dolganov P V, Baklanova K D, Dolganov V K. Optical properties and photonic density of states in one-dimensional and three-dimensional liquid-crystalline photonic crystals [J]. Liq. Cryst., 2020, 47(2): 231
24 Tilley R J D. Colour and the optical properties of materials: an exploration of the relationship between light, the optical properties of materials and colour [M]. New York: John Wiley & Sons, Ltd., 2010
25 Meng J Y, Xian Z Y, Li X, et al. Preparation and application of photonic crystal fibers [J]. Mater. Rev., 2018, 31(5): 106
孟佳意, 县泽宇, 李昕等. 光子晶体纤维的制备及应用 [J]. 材料导报, 2018, 31(5): 106
26 Luis G., Baert K, Kolaric B, et al. Linear and nonlinear optical properties of colloidal photonic crystals [J]. Chem. Rev., 2012, 112(4): 2268
27 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77
28 Comoretto D, Grassi R, Marabelli F, et al. Growth and optical studies of opal films as three-dimensional photonic crystals [J]. Mater. Sci. Eng. C, 2003, 23(1-2): 61
29 Schroden R C, Al-daous M, Blanford C F, et al. Optical properties of inverse opal photonic crystals [J]. Chem. Mater., 2002, 14(8): 3305
30 You B, Wen N G, Shi L, et al. Facile fabrication of a three-dimensional colloidal crystal film with large-area and robust mechanical properties [J]. J. Mater. Chem. C, 2009, 19:3594
31 Wang W, Gu B, Liang L, et al. Fabrication of two-dimensional and three-dimensional silica nanocolloidal particle arrays [J]. J. Phys. Chem. B, 2003, 107(15): 3400
32 Gao W, Rigout M, Owens H. Optical properties of cotton and nylon fabrics coated with silica photonic crystals [J]. Opt. Mater. Express, 2017, 7(2): 341
33 Gao W, Rigout M, Owens H. Self-assembly of silica colloidal crystal thin films with tuneable structural colours over a wide visible spectrum [J]. Appl. Surf. Sci., 2016, 380: 12
34 Lai C F, Wang Y C. Colloidal photonic crystals containing silver nanoparticles with tunable structural colors [J]. Crystals, 2016, 6(5): 61
35 Zhou L, Wu Y, Chai L, et al. Study on the formation of three-dimensionally ordered SiO2 photonic crystals on polyester fabrics by vertical deposition self-assembly [J]. Text. Res. J., 2016, 86(18): 1973
36 Zhang J, Luo X Y, Yan X, et al. Fabrication of high-quality colloidal crystal films by vertical deposition method integrated with a piezoelectric actuator [J]. Thin Solid Films, 2010, 518(18): 5204
37 Liu G J, Zhou L, Wu Y, et al. The fabrication of full color P(St-MAA) photonic crystal structure on polyester fabrics by vertical deposition self-assembly [J]. J. Appl. Polym. Sci., 2015, 132(13): 1
38 Tsuchiys M, Kurashina Y, Onoe H. Eye-recognizable and repeatable biochemical flexible sensors using low angle-dependent photonic colloidal crystal hydrogel microbeads [J]. Sci. Rep-UK., 2019, 9(1): 1
39 Han J W, Qin J J, Li X, et al. Fabrication of opal/inverse opal structure by vertical deposition and centrifugal sedimentation [J]. Mater. Sci., 2017, 7(3): 353
韩吉薇, 秦俊杰, 李雪等. 垂直沉积和离心沉降的蛋白石结构与反蛋白石结构的制备研究 [J]. 材料科学, 2017, 7(3): 353
40 Huang D, Zeng M, Wang L, et al. Biomimetic colloidal photonic crystals by coassembly of polystyrene nanoparticles and graphene quantum dots [J]. RSC Adv., 2018, 8(61): 34839
41 Liu Z F, Zhang Q H, Wang H Z, et al. Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method [J]. Nanoscale, 2013, 5(15): 6917
42 Louh R F, Huang Y J, Tsai Y C, et al. Fabrication andcharacterization of 3-D photonic crystals of various microspheres by electrophoretic self-assembly [J]. Key. Eng. Mater., 2015, 654(2): 106
43 Yuan X, Liu Z, Shang S, et al. Visibly vapor-responsive structurally colored carbon fibers prepared by an electrophoretic deposition method [J]. RSC Adv., 2016, 6(20): 16319
44 Yoon S Y, Kim H K. Cost-effective stretchable Ag nanoparticles electrodes fabrication by screen printing for wearable strain sensors [J]. Surf. Coat. Technol., 2020, 384(C): 1
45 Gomes P, Tama D, Carvalho H, et al. Resistance variation of conductive ink applied by the screen printing technique on different substrates [J]. Color. Technol., 2020, 136(2): 130
46 Zhou C T, Qi Y, Zhang S F, et al. Rapid fabrication of vivid noniridescent structural colors on fabrics with robust structural stability by screen printing [J]. Dyes Pigm., 2020, 176: 108226
47 Nam H, Song K, Ha D, et al. Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors [J]. Sci. Rep-UK, 2016, 6(1): 2059
48 Bai L, Xie Z Y, Wang W, et al. Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing [J]. ACS Nano, 2014, 8(11): 11094
49 Ding H B, Zhu C, Tian L, et al. Structural color patterns by electrohydrodynamic jet printed photonic crystals [J]. ACS Appl. Mater. Interfaces, 2017, 9(13): 11933
50 Liu G J, Zhou L, Zhang G Q, et al. Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using inkjet printing technology [J]. Mater. Des., 2017, 114: 10
51 Wu Y, Zhou L, Dai X L, et al. Preparation and application of structural coloration inks composed of disperse dyes/P (St-BA-MAA) composite microspheres [J]. Text Dyeing and Finishing Journal, 2020, 42(3): 24
吴钰, 周岚, 戴香玲等. 分散染料/P(St-BA-MAA)复合微球结构生色墨水的制备及应用 [J]. 染整技术, 2020, 42(3): 24
52 Qin M, Huang Y, Li Y N, et al. A rainbow structural-color chip for multisaccharide recognition [J]. Angew. Chem. Int. Ed., 2016, 55(24): 6911
53 Li Y C, Zhou L, Liu G J, et al. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates [J]. Appl. Surf. Sci., 2018, 444:145
54 Shi X D, He J L, Xie X h, et al. Photonic crystals with vivid structure color and robust mechanical strength [J]. Dyes Pigm., 2019, 165:137
[1] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] HE Ying, LI Chaoqun, CHEN Xiaoli, LONG Zhimei, LAI Jiaqi, SHAO Bin, MA Yilong, CHEN Dengming, DONG Jiling. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. 材料研究学报, 2022, 36(5): 321-331.
[5] SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films[J]. 材料研究学报, 2022, 36(3): 161-174.
[6] ZHAO Ning, JIAO Da, ZHU Yankun, LIU Dexue, LIU Zengqian, ZHANG Zhefeng. Material Science Mechanism for Efficient Protection of Natural Armor[J]. 材料研究学报, 2022, 36(1): 1-7.
[7] SONG Xiaolong, LUO Weijing, NAN Yanli. A Review for Synthesis and Applications of Carbon Nanohorns[J]. 材料研究学报, 2021, 35(6): 401-410.
[8] ZHAO Wanli, SUO Hongli, LIU Min, MA Lin, DAI Yinming, ZHANG Zili. Research Progress in Preparation of MgB2 Bulk by Diffusion Method[J]. 材料研究学报, 2021, 35(6): 411-418.
[9] PAN Ying, ZHAO Hongting. Preparation of Halloysite Based Layer-by-Layer Coating on Flexible Polyurethane Foam and Its Performance of Flame Retardant and Smoke Suppression[J]. 材料研究学报, 2021, 35(6): 449-457.
[10] LANG Zhenqian, YE Zheng, YANG Jian, HUANG Jihua. Research Progress of Repair Technology for Surface Defects of Single Crystal Superalloy[J]. 材料研究学报, 2021, 35(3): 161-174.
[11] YU Jianzhong, XV Xinling, YE Song. Research Progress on the Applications of Silver-loaded Zeolites[J]. 材料研究学报, 2021, 35(11): 801-810.
[12] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
[13] OU Jinhua, HU Bonian, WANG Wei, HAN Yu. Transparent MSe2@N-doped Carbon Film as a Cathode for Co(Ⅲ/Ⅱ)-mediated Bifacial Dye-sensitized Solar Cells[J]. 材料研究学报, 2020, 34(9): 683-690.
[14] HOU Zhiquan,GUO Meng,LIU Yuxi,DENG Jiguang,DAI Hongxing. Synthesis of Intermetallic Compounds and Their Catalytic Applications[J]. 材料研究学报, 2020, 34(2): 81-91.
[15] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
No Suggested Reading articles found!