|
|
Microstructure Evolution and Strength-ductility Behavior of FeCoNiTi High-entropy Alloy |
LIU Yi1, XU Kang1, TU Jian1,2( ), HUANG Can1, WU Wei1, TAN Li1, ZHANG Yanbin1, YIN Ruisen3, ZHOU Zhiming1,2 |
1.School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China 2.Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054, China 3.School of Aerospace Engineering, Chongqing University, Chongqing 400030, China |
|
Cite this article:
LIU Yi, XU Kang, TU Jian, HUANG Can, WU Wei, TAN Li, ZHANG Yanbin, YIN Ruisen, ZHOU Zhiming. Microstructure Evolution and Strength-ductility Behavior of FeCoNiTi High-entropy Alloy. Chinese Journal of Materials Research, 2020, 34(7): 535-544.
|
Abstract A new type of dual-phase high-entropy alloy (FeCoNiTi) was designed by means of thermodynamic software and then block material of FeCoNiTi high-entropy alloy was prepared via vacuum arc smelting and then heat treatment. Characterization results demonstrate that the as-homogenized FeCoNiTi alloy presents dual-phase microstructure composed of the lamellar structure (hexagonal close packed (Laves) phase) and the Widmanstätten laths (face-centered cubic (FCC) phase). The FeCoNiTi alloy shows excellent comprehensive property at room temperature with compressive strength σb=2.08 GPa and compression strain ε=20.3%. The high strength can mainly be attributed to the hard Laves phase (lamellar structure) strengthening; while dislocation slip and deformation twin in the soft FCC phase (Widmanstätten laths) provide the ductility.
|
Received: 02 December 2019
|
|
Fund: Basic and Advanced Research Project of CQ CSTC(2017jcyjAX0381);Science and Technology Research Program of Chongqing Municipal Education Commissio(KJQN201801139);China Postdoctoral Science Foundation Funded Project(2018M632250) |
[1] |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
|
[2] |
Tsai M H, Yeh J W. High-entropy alloys: a critical review [J]. Materials Research Letters, 2014, 2(3): 107
doi: 10.1080/21663831.2014.912690
|
[3] |
Praveen S, Kim H S. High-Entropy Alloys: Potential Candidates for High-Temperature Applications-An Overview [J]. Advanced Engineering Materials, 2018, 20(1): 1
|
[4] |
Zhang W, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Science China Materials, 2018, 61(1): 2
doi: 10.1007/s40843-017-9195-8
|
[5] |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017: 448
|
[6] |
Cao L G, Zhu L, Zhang L L, et al. Microstructure Evolution and Mechanical Properties of Rapid Solidified AlCoCrFeNi2.1 Eutectic High Entropy Alloy [J]. Chinese Journal of Materials Research, 2019, 33(9): 650
doi: 10.11901/1005.3093.2019.069
|
|
(曹雷刚, 朱琳, 张磊磊, 王辉, 崔岩, 杨越, 刘峰斌. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能 [J]. 材料研究学报, 2019, 33(9): 650)
doi: 10.11901/1005.3093.2019.069
|
[7] |
Zhou Y J, Zhang Y, Wang Y L, et al. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100-x high-entropy alloys [J]. Materials Science & Engineering A, 454-455(none): 260
|
[8] |
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Materialia, 2013, 61(15): 5743
|
[9] |
Wang J, Huang W G. Microstructure and Mechanical Properties of CrMoVNbFex High-entropy Alloys [J]. Chinese Journal of Materials Research, 2016, 30(8): 609
|
|
(王江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30(8): 609)
|
[10] |
He J Y, Wang H, Huang H, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Materialia, 2016: 187
|
[11] |
Huang H, Wu Y, He J, et al. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering [J]. Advanced Materials, 1701678
doi: 10.1002/adma.202003530
pmid: 32697371
|
[12] |
Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534(7606): 227
doi: 10.1038/nature17981
|
[13] |
Jiang L, Jiang H, Lu Y, et al. Mechanical Properties Improvement of AlCrFeNi2Ti0.5 High Entropy Alloy through Annealing Design and its Relationship with its Particle-reinforced Microstructures [J]. Journal of Materials Science & Technology, 2015, 31(4): 397
|
[14] |
Laplanche G, Horst O, Otto F, et al. Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing [J]. Journal of Alloys and Compounds, 2015: 548
|
[15] |
Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys [J]. Materials Science and Engineering: A, 2018: 380
|
[16] |
Wang Q, Ma Y, Jiang B, et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0. 7CoCrFe2Ni with prominent tensile properties [J]. Scripta Materialia, 2016: 85
|
[17] |
Á Vida, Chinh N Q, Lendvai J, et al. Microstructures and transition from brittle to ductile behavior of NiFeCrMoW High Entropy Alloys [J]. Materials Letters, 2017: 14
|
[18] |
Wu B, Chen W, Jiang Z, et al. Influence of Ti addition on microstructure and mechanical behavior of a FCC-based Fe 30 Ni 30 Co 30 Mn 10 alloy [J]. Materials Science and Engineering: A, 2016, 676:492
|
[19] |
Dinsdale A T. SGTE data for pure element [J]. Calphad, 1991, 15(4): 317
|
[20] |
Vaidya M, Guruvidyathri K, Murty B S. Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys [J]. Journal of Alloys and Compounds, 2019: 856
|
[21] |
Grewal R, Aranas Jr C, Chadha K, et al. Formation of Widmanstätten ferrite at very high temperatures in the austenite phase field [J]. Acta Materialia, 2016: 23
|
[22] |
Banerjee S, Mukhopadhyay P. Phase transformations: examples from titanium and zirconium alloys [M]. Elsevier, 2010
|
[23] |
Hu D, Huang A J, Wu X. TEM characterisation of Widmanstätten microstructures in TiAl-based alloys [J]. Intermetallics, 2005, 13(2): 211
doi: 10.1016/j.intermet.2004.08.007
|
[24] |
Feng X, Zhang J, Wu K, et al. Ultrastrong Al 0.1 CoCrFeNi high-entropy alloys at small scales: effects of stacking faults vs. nanotwins [J]. Nanoscale, 2018, 10(28): 13329
doi: 10.1039/c8nr03573c
pmid: 29989622
|
[25] |
Huang S, Huang H, Li W, et al. Twinning in metastable high-entropy alloys [J]. Nature communications, 2018, 9(1-7): 2381
doi: 10.1038/s41467-018-04780-x
|
[26] |
Tu J, Liu L, Dou Y, et al. Deformation and annealing behaviors of as-cast non-equiatomic high entropy alloy [J]. Materials Science and Engineering: A, 2018: 9
|
[27] |
Miedema A R, De Chatel P F, De Boer F R. Cohesion in alloys—fundamentals of a semi-empirical model [J]. Physica B & C, 1980, 100(1): 1
|
[28] |
Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta materialia, 2000, 48(1): 279
|
[29] |
Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. Journal of Applied Physics, 2011, 109(10): 103505
doi: 10.1063/1.3587228
|
[30] |
Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014: 131
|
[31] |
Cui P, Ma Y, Zhang L, et al. Effect of Ti on microstructures and mechanical properties of high entropy alloys based on CoFeMnNi system [J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2018: 198
|
[32] |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects [J]. Materials Today, 2016, 19(6): 349
doi: 10.1016/j.mattod.2015.11.026
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|