Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (7): 535-544    DOI: 10.11901/1005.3093.2019.557
ARTICLES Current Issue | Archive | Adv Search |
Microstructure Evolution and Strength-ductility Behavior of FeCoNiTi High-entropy Alloy
LIU Yi1, XU Kang1, TU Jian1,2(), HUANG Can1, WU Wei1, TAN Li1, ZHANG Yanbin1, YIN Ruisen3, ZHOU Zhiming1,2
1.School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2.Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054, China
3.School of Aerospace Engineering, Chongqing University, Chongqing 400030, China
Cite this article: 

LIU Yi, XU Kang, TU Jian, HUANG Can, WU Wei, TAN Li, ZHANG Yanbin, YIN Ruisen, ZHOU Zhiming. Microstructure Evolution and Strength-ductility Behavior of FeCoNiTi High-entropy Alloy. Chinese Journal of Materials Research, 2020, 34(7): 535-544.

Download:  HTML  PDF(24234KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A new type of dual-phase high-entropy alloy (FeCoNiTi) was designed by means of thermodynamic software and then block material of FeCoNiTi high-entropy alloy was prepared via vacuum arc smelting and then heat treatment. Characterization results demonstrate that the as-homogenized FeCoNiTi alloy presents dual-phase microstructure composed of the lamellar structure (hexagonal close packed (Laves) phase) and the Widmanstätten laths (face-centered cubic (FCC) phase). The FeCoNiTi alloy shows excellent comprehensive property at room temperature with compressive strength σb=2.08 GPa and compression strain ε=20.3%. The high strength can mainly be attributed to the hard Laves phase (lamellar structure) strengthening; while dislocation slip and deformation twin in the soft FCC phase (Widmanstätten laths) provide the ductility.

Key words:  metallic materials      high entropy alloy      strength-ductility      dual-phase      widmanstätten laths     
Received:  02 December 2019     
ZTFLH:  TG113.1  
Fund: Basic and Advanced Research Project of CQ CSTC(2017jcyjAX0381);Science and Technology Research Program of Chongqing Municipal Education Commissio(KJQN201801139);China Postdoctoral Science Foundation Funded Project(2018M632250)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.557     OR     https://www.cjmr.org/EN/Y2020/V34/I7/535

Fig.1  Fraction of stable phases as function of temperature calculated by CAPHAD for (a) FeCoNi and (b) FeCoNiTi
Fig.2  (a) the optical microscopy images of the as-cast FeCoNiTi HEA, revealing the nearly equiaxial dendrite structure; (b) the homogenized microstructure, revealing coarse grain boundary and Widmanstätten laths
Fig.3  Back-scattered electron images of the as-homogenized FeCoNiTi HEA (a) lamellar structure and Widmanstätten laths; (b) Widmanstätten laths showing misorientation of 29.3°, 62.8° and 89.1° (marked by arrows) with respect to the embedding lamellar structure, Widmanstätten laths with three different angles of intersection are revealed, i.e., 39.1°,55.8° and 70.1° (marked by arrows); two Widmanstätten laths showing two shapes: strip in (c) and triangle in (d)
Fig.4  (a), (b) and (c) band contrast map, inverse pole figure and phase map, respectively. The inset shows X-ray diffraction patterns. Relationship between FCC and Laves phases: pole figure of FCC phase in (d), and pole figure of Laves phase in (e), revealing the S-N relationship between the Laves phase and its adjacent FCC phase in the white rectangle of (c)
Fig.5  (a) and (b) shows the widmanstätten laths and lamellar structure
MicrostructureElements (%, atom fraction)
FeCoNiTi
Lamellar structureLocations 131.628.911.228.3
Locations 333.328.710.528.5
Widmanstätten lathsLocations 217.4127.232.4122.98
Locations 417.427.432.322.9
Table 1  Chemical composition of lamellar structure (locations 1 and 3) and Widmanstätten laths (locations 2 and 4)
Fig.6  (a) compressive stress-strain curve, (b) compressive fracture morphology of FeCoNiTi HEA
Fig.7  SEM images under the different magnification for the as-deformed FeCoNiTi HEA; two typical types of deformation microstructure are detectable in (a) and (b); the distorted lamellar structure in (c); the lenticular twins in (d)
Fig.8  shows EBSD maps for the deformed FeCoNiTi HEA (a) IPF map showing two coarse grains; (b) grain boundary map showing low angle boundaries (LABs, marked by gray lines), high angle boundaries (HABs, marked by black lines). and twinning boundaries (TBs, marked by red lines); grain boundary misorientation statistical results of FCC phase and Laves phase in (c) and (d), respectively; (e) and (f) showing dual phase microstructure under higher magnification images: Laves phase (lamellar structure) embedded in FCC phase; (g) kernel average misorientation map showing the deformation behavior in FCC and Laves phases
ElementFeCoNiTi

Atom radius

/nm

VEC

Young's moduli

/GPa

Fe0-1-2-170.12148211
Co-00-280.12519209
Ni--0-350.124610200
Ti---00.14624116
Table 2  The enthalpy of mixing (ΔHmix, kJ mol-1) of binary equiatomic alloys calculated by Miedema's approach. The atom radius, valence electron concentrations (VEC) and Young’s modili of Fe, Co, Ni, Ti
Fig.9  Microstructure evolution of FeCoNiTi HEA (a) Liquid, (b) As-cast, (c) As-homogenized, (d) Deformed
[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
[2] Tsai M H, Yeh J W. High-entropy alloys: a critical review [J]. Materials Research Letters, 2014, 2(3): 107
doi: 10.1080/21663831.2014.912690
[3] Praveen S, Kim H S. High-Entropy Alloys: Potential Candidates for High-Temperature Applications-An Overview [J]. Advanced Engineering Materials, 2018, 20(1): 1
[4] Zhang W, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Science China Materials, 2018, 61(1): 2
doi: 10.1007/s40843-017-9195-8
[5] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017: 448
[6] Cao L G, Zhu L, Zhang L L, et al. Microstructure Evolution and Mechanical Properties of Rapid Solidified AlCoCrFeNi2.1 Eutectic High Entropy Alloy [J]. Chinese Journal of Materials Research, 2019, 33(9): 650
doi: 10.11901/1005.3093.2019.069
(曹雷刚, 朱琳, 张磊磊, 王辉, 崔岩, 杨越, 刘峰斌. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能 [J]. 材料研究学报, 2019, 33(9): 650)
doi: 10.11901/1005.3093.2019.069
[7] Zhou Y J, Zhang Y, Wang Y L, et al. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100-x high-entropy alloys [J]. Materials Science & Engineering A, 454-455(none): 260
[8] Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Materialia, 2013, 61(15): 5743
[9] Wang J, Huang W G. Microstructure and Mechanical Properties of CrMoVNbFex High-entropy Alloys [J]. Chinese Journal of Materials Research, 2016, 30(8): 609
(王江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30(8): 609)
[10] He J Y, Wang H, Huang H, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Materialia, 2016: 187
[11] Huang H, Wu Y, He J, et al. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering [J]. Advanced Materials, 1701678
doi: 10.1002/adma.202003530 pmid: 32697371
[12] Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534(7606): 227
doi: 10.1038/nature17981
[13] Jiang L, Jiang H, Lu Y, et al. Mechanical Properties Improvement of AlCrFeNi2Ti0.5 High Entropy Alloy through Annealing Design and its Relationship with its Particle-reinforced Microstructures [J]. Journal of Materials Science & Technology, 2015, 31(4): 397
[14] Laplanche G, Horst O, Otto F, et al. Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing [J]. Journal of Alloys and Compounds, 2015: 548
[15] Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys [J]. Materials Science and Engineering: A, 2018: 380
[16] Wang Q, Ma Y, Jiang B, et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0. 7CoCrFe2Ni with prominent tensile properties [J]. Scripta Materialia, 2016: 85
[17] Á Vida, Chinh N Q, Lendvai J, et al. Microstructures and transition from brittle to ductile behavior of NiFeCrMoW High Entropy Alloys [J]. Materials Letters, 2017: 14
[18] Wu B, Chen W, Jiang Z, et al. Influence of Ti addition on microstructure and mechanical behavior of a FCC-based Fe 30 Ni 30 Co 30 Mn 10 alloy [J]. Materials Science and Engineering: A, 2016, 676:492
[19] Dinsdale A T. SGTE data for pure element [J]. Calphad, 1991, 15(4): 317
[20] Vaidya M, Guruvidyathri K, Murty B S. Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys [J]. Journal of Alloys and Compounds, 2019: 856
[21] Grewal R, Aranas Jr C, Chadha K, et al. Formation of Widmanstätten ferrite at very high temperatures in the austenite phase field [J]. Acta Materialia, 2016: 23
[22] Banerjee S, Mukhopadhyay P. Phase transformations: examples from titanium and zirconium alloys [M]. Elsevier, 2010
[23] Hu D, Huang A J, Wu X. TEM characterisation of Widmanstätten microstructures in TiAl-based alloys [J]. Intermetallics, 2005, 13(2): 211
doi: 10.1016/j.intermet.2004.08.007
[24] Feng X, Zhang J, Wu K, et al. Ultrastrong Al 0.1 CoCrFeNi high-entropy alloys at small scales: effects of stacking faults vs. nanotwins [J]. Nanoscale, 2018, 10(28): 13329
doi: 10.1039/c8nr03573c pmid: 29989622
[25] Huang S, Huang H, Li W, et al. Twinning in metastable high-entropy alloys [J]. Nature communications, 2018, 9(1-7): 2381
doi: 10.1038/s41467-018-04780-x
[26] Tu J, Liu L, Dou Y, et al. Deformation and annealing behaviors of as-cast non-equiatomic high entropy alloy [J]. Materials Science and Engineering: A, 2018: 9
[27] Miedema A R, De Chatel P F, De Boer F R. Cohesion in alloys—fundamentals of a semi-empirical model [J]. Physica B & C, 1980, 100(1): 1
[28] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta materialia, 2000, 48(1): 279
[29] Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. Journal of Applied Physics, 2011, 109(10): 103505
doi: 10.1063/1.3587228
[30] Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014: 131
[31] Cui P, Ma Y, Zhang L, et al. Effect of Ti on microstructures and mechanical properties of high entropy alloys based on CoFeMnNi system [J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2018: 198
[32] Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects [J]. Materials Today, 2016, 19(6): 349
doi: 10.1016/j.mattod.2015.11.026
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!