Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (7): 511-517    DOI: 10.11901/1005.3093.2019.509
ARTICLES Current Issue | Archive | Adv Search |
Chromium Concentration Near Grain Boundaries with Various Characters in Inconel Alloy 600
ZHENG Hefeng, SHI Mengjie, MAO Qiang, ZHANG Mengchao, LI Hui()
Key Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
Cite this article: 

ZHENG Hefeng, SHI Mengjie, MAO Qiang, ZHANG Mengchao, LI Hui. Chromium Concentration Near Grain Boundaries with Various Characters in Inconel Alloy 600. Chinese Journal of Materials Research, 2020, 34(7): 511-517.

Download:  HTML  PDF(7339KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The structure and morphology of carbides and the concentration of Cr near various type of grain boundaries of Inconel alloy 600 after aging treatment at 715℃ for different time were investigated by means of TEM, EDS and EBSD. The results show that there are obvious differences in structure and morphology of carbides precipitated at grain boundaries. Few carbides precipitated at Σ3c grain boundary, irregular shape M23C6 carbides precipitated at Σ3i grain boundary, and lager M23C6 carbide particles precipitated at Σ9 grain boundary. The coarse M7C3 carbide particles precipitated randomly at Σ27 grain boundaries. The precipitation of Cr-rich carbides causes Cr-depletion near the grain boundaries. Under the same aging conditions, the Cr-depletion is more severe near the grain boundaries of higher Σ value. The width of Cr-depletion zone near the grain boundary increases with the increase of aging time. However, the depth of Cr-depletion zone near the grain boundary reaches the maximum value after aging for 15 h, and then decreases to different degrees after aging for 50 h. Based on the experimental results the effect of grain boundary character on the carbide precipitation and Cr-depletion is discussed.

Key words:  metallic materials      carbide      chromium depletion      grain boundary character      grain boundary engineering      Inconel alloy 600     
Received:  04 November 2019     
ZTFLH:  TG14  
Fund: National Key Research and Development Program of China(2016YFB0700401)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.509     OR     https://www.cjmr.org/EN/Y2020/V34/I7/511

Fig.1  OIM maps of Alloy 600 samples (a) solution treated at 1100℃ for 15 min, (b) and then is cold-rolled 5%, recrystallized at 1100℃ for 5 min, and (c) grain boundary character distribution statistics (Palumbo-Aust criterion[13], length fraction) of solution treatment and GBE treated samples
Fig.2  Preparing of TEM samples using focus ion beam technology. (a) OIM map of sample, (b) the corresponding SEM image of the Σ27 grain boundary indicated by the black circle in figure a, (c) cutting the slice containing this grain boundary, (d) milling to prepare the thin foil TEM sample containing this grain boundary
Fig.3  TEM analysis of carbide precipitated at grain boundaries with various characters in the samples aging at 715℃ for 2 h (The dashed line highlights the position of grain boundary) (a, b) Σ3c grain boundary, (c, d) Σ3i grain boundary, (e, f) Σ9 grain boundary, (g, h) Σ27 grain boundary, (i, j) Random grain boundary
Fig.4  Evolution of depletion zone in the samples aged at 715℃ for different time. (a) STEM image showing the position of EDS line scan near the grain boundary of the samples, and the distribution of chromium concentration at different types of grain boundaries in the samples aged at 715℃ for (b) 2 h, (c) 15 h, (d) 50 h
Fig.5  Evolution of chromium depletion zone near grain boundaries with various characters in the samples aged at 715℃ for different time (a) the half high width and (b) the depth of chromium depletion zone
[1] Andresen P L, Hickling J, Ahluwalia A, et al. Effects of hydrogen on stress corrosion crack growth rate of nickel alloys in high-temperature water [J]. Corros., 2008, 64(9): 707
doi: 10.5006/1.3278508
[2] Mathon C, Chaudhary A, Gay N, et al. Predicting tube repair at French nuclear steam generators using statistical modeling [J]. Nucl. Engi. Desi., 2014; 269: 29
[3] Spigarelli S, Cabibbo M, Evangelista E, et al. Analysis of the creep strength of a low-carbon AISI 304 steel with low-Σ grain boundaries [J]. Mater. Sci. Eng. A., 2003, 352(1): 93
doi: 10.1016/S0921-5093(02)00903-6
[4] Lee T H, Suh H Y, Han S K, et al. Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes [J]. J. Nucl. Mater., 2016, 479:85
doi: 10.1016/j.jnucmat.2016.06.038
[5] Stiller K, Nilsson J O, Norring K. Structure, chemistry, and stress corrosion cracking of grain boundaries in alloys 600 and 690 [J]. Metall. Mater. Trans. A., 1996, 27(2): 327
doi: 10.1007/BF02648410
[6] Ma Y C, Li S, Hao X C, et al. Study on grain boundary carbides and chromium depletion near grain boundary in two kinds of 690 alloys with different N contents [J]. Acta. Metall. Sin., 2016, 52: 980
doi: 10.11900/0412.1961.2015.00636
(马颖澈, 李硕, 郝宪朝等. 2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究[J]. 金属学报, 2016, 52: 980)
doi: 10.11900/0412.1961.2015.00636
[7] Watanabe T. An approach to grain boundary design of strong and ductile polycrystals[J]. Res. Mech., 1984, 11: 47
[8] Aust K T, Erb U, Palumbo G. Interface control for resistance to intergranular cracking [J]. Mater. Sci. Eng. A., 1994, 176(1-2): 329
doi: 10.1016/0921-5093(94)90995-4
[9] Telang A, Gill A S, Zweiacker K, et al. Effect of thermo-mechanical processing on sensitization and corrosion in alloy 600 studied by SEM- and TEM-Based diffraction and orientation imaging techniques [J]. J. Nucl. Mater., 2018, 505: 276
doi: 10.1016/j.jnucmat.2017.07.053
[10] Bi H Y, Kokawa H, Wang Z J, et al. Suppression of chromium depletion by grain boundary structural change during twin-induced grain boundary engineering of 304 stainless steel [J]. Scr. Mater., 2003, 49(3): 219
doi: 10.1016/S1359-6462(03)00261-6
[11] Lim Y S, Kim J S, Kim H P, et al. The effect of grain boundary misorientation on the intergranular M23C6 carbide precipitation in thermally treated Alloy 690 [J]. J. Nucl. Mater., 2004, 335(1): 108
doi: 10.1016/j.jnucmat.2004.07.038
[12] Li H, Ma J R, Liu X R, et al. Morphology evolution of grain boundary carbides in highly twinned inconel alloy 600 [J]. Mater. Sci. For., 2016, 879: 1111
[13] Palumbo G, Aust K T, Lehockey E M, et al. On a more restrictive geometric criterion for “special” CSL grain boundaries [J]. Scr. Mater., 1998, 38(11): 1685
doi: 10.1016/S1359-6462(98)00077-3
[14] Hu R, Bai G, Li J, et al. Precipitation behavior of grain boundary M23C6 and its effect on tensile properties of Ni-Cr-W based superalloy [J]. Mater. Sci. Eng. A., 2012, 548: 83
doi: 10.1016/j.msea.2012.03.092
[15] Li H, Xia S, Zhou B X, et al. Evolution of carbide morphology precipitated at grain in boundaries Ni-based alloy 690 [J]. Acta. Metall. Sin., 2009, 45(2): 195
(李慧, 夏爽, 周邦新等. 镍基690合金时效过程中晶界碳化物的形貌演化 [J]. 金属学报, 2009, 45(2): 195)
[16] Baik S II, Olszta M J, Bruemmer S M, et al. Grain-boundary structure and segregation behavior in a nickel-base stainless alloy [J]. Scr. Mater., 2012, 66(10): 809
doi: 10.1016/j.scriptamat.2012.02.014
[17] Randle V, Coleman M, Waterton M. The role of Σ9 boundaries in grain boundary engineering [J]. Metall. Mater. Trans. A, 2011, 42(3): 582
doi: 10.1007/s11661-010-0302-7
[18] Carpenter S D, Carpenter D. Stacking faults and superlattice observations during transmission electron microscopy of a (Fe,Cr)7C3 carbide [J]. Mater. Lett., 2003, 57(28): 4460
doi: 10.1016/S0167-577X(03)00343-4
[19] Jiao S Y, Zheng L, Dong J X, et al. Evolutionary dynamics simulation and process optimization of 690 alloy grain boundary carbide and chromium-depleted zone [J]. J. Mech. Eng., 2010, 46(14): 53
(焦少阳, 郑磊, 董建新等. 690合金晶界碳化物和贫铬区演化动力学模拟及工艺优化 [J]. 机械工程学报, 2010, 46(14): 53)
[20] Dong R F, Li J S, Zhang T B, et al. Elements segregation and phase precipitation behavior at grain boundary in a Ni-Cr-W based superalloy [J]. Mater. Charact., 2016, 122: 189
doi: 10.1016/j.matchar.2016.11.002
[21] Jiao S Y, Zhang M C, Zheng L, et al. Investigation of carbide precipitation process and chromium depletion during thermal treatment of alloy 690 [J]. Metall. Mater. Trans. A., 2010, 41(1): 26
doi: 10.1007/s11661-009-0082-0
[22] Thuvander M, Miller M K, Stiller K. Grain boundary segregation during heat treatment at 600℃ in a model alloy 600 [J]. Mater. Sci. Eng. A, 1999, 270(1): 38
doi: 10.1016/S0921-5093(99)00236-1
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!