Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (7): 518-526    DOI: 10.11901/1005.3093.2019.478
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Columnar-equiaxed Transformation Prediction of TC4-DT Alloy Prepared by Arc Additive Manufacturing with Coaxial Wire Feeding of Cold Metal Transfer Mode
DU Zijie1,2, LI Wenyuan2(), LIU Jianrong2, SUO Hongbo3, WANG Qingjiang2
1.University of Science and Technology of China, Hefei 230026,China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016,China
3.Qingdao JointX Intelligent Manufacturing Limited, Qingdao 266109,China
Cite this article: 

DU Zijie, LI Wenyuan, LIU Jianrong, SUO Hongbo, WANG Qingjiang. Microstructure and Columnar-equiaxed Transformation Prediction of TC4-DT Alloy Prepared by Arc Additive Manufacturing with Coaxial Wire Feeding of Cold Metal Transfer Mode. Chinese Journal of Materials Research, 2020, 34(7): 518-526.

Download:  HTML  PDF(3181KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A TC4-DT Ti-alloy of two tracks and three layers was manufactured via arc additive manufacturing (CMT WAAM) coupled with cold metal transfer mode coaxial wire feeding, while the TC4-DT Ti-alloy wire of 1.2 mm in diameter was adoped as feeding wire. The microstructure of the acquired alloy was then characterized. Results show that fine equiaxed prior β-grains were found in the cambered heat affected zone; The bottom layer of the deposition zone consisted of thin columnar grains; The middle and top layers were composed of equiaxed grains and short columnar grains. Which was quite different from the coarse columnar grains produced by processes of EBRM and TIG WAAM. The microstructure of deposition zone presents basket weave α-phase laths, similar with that of EBRM and TIG WAAM. The 3D-Rosenthal solution was used to investigate the formation of the microstructure of the deposition zone. The maximum temperature gradient of the molten pool boundary calculated is about 12652.6 K/cm, and the maximum solidification speed is about 1.5 cm/s. The calculated solidification conditions just located in the mixed zone in the columnar-equiaxed-transformation (CET) model, consistent with the experiment results. The calculation results demonstrated that with the increasing input power P and the welding gun traveling speed V, the formation of equiaxed grains was promoted, while the grain size would gradually decrease with the increase of V. The mixed macrostructure would form when P>153 W and V>3.2 mm/s.

Key words:  metallic materials      TC4-DT Ti-alloy      CMT WAAM      CET model      3D-Rosenthal solution     
Received:  15 October 2019     
ZTFLH:  TG146  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.478     OR     https://www.cjmr.org/EN/Y2020/V34/I7/518

Fig.1  Sample manufactured by CMT WAAM (a) deposition path of the sample; (b) schematic of the sample
AlVFeONHTi
6.154.25<0.050.130.0050.003Bal.
Table 1  Composition of TC4-DT (mass fraction, %)
Fig.2  Macrostructure of the sample (a) macrostructure of the sample; (b) local macrostructure
Fig.3  Variation of the average width of prior-β grains along the deposition direction
Fig.4  Microstructure of heat affected zone(HAZ) and deposition zone (a) heat affected zone; (b) bottom layer; (c) middle layer; (d) top layer
Fig.5  Morphologies of borderline (a) macrostructure in of borderline; (b, c) microstructure of borderline
Fig.6  Solidification map of TC4-DT by CMT
Fig.7  3D geometry manufactured by CMT
Fig.8  Predicted results of 3D-Rosenthal solution
Fig.9  Impact of processing parameters on macrostructure of TC4-DT manufactured by CMT (a) power (P=50~20000 W, V=15 mm/s); (b) velocity (P=2254 W, V=1~35 mm/s)
Fig.10  Origanization division of the heat affected zone and band zone
[1] Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloy and Its Application [M]. Beijing: Chemical Industry Press, 2005: 1
(张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005: 1)
[2] Wang J Y. Titanium Alloy for Aviation [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1985: 1
(王金友. 航空用钛合金 [M]. 上海: 上海科学技术出版社, 1985: 1)
[3] Li L, Sun J K, Meng X J. Application state and prospects for titanium alloys [J]. Titanium Ind. Prog., 2004, 21(5): 19
(李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景 [J]. 钛工业进展, 2004, 21(5): 19)
[4] Liu W. Study on microstructure and tensile properties of TC4-DT titanium alloy forgings [J]. Heavy Cast. Forg., 2018, (3): 38
(刘卫. TC4-DT钛合金锻件组织与拉伸性能研究 [J]. 大型铸锻件, 2018, (3): 38)
[5] Guo P, Zhao Y Q, Hong Q. Effect of microstructure on fatigue crack propagation rate of TC4-DT titanium alloy [J]. Trans. Mater. Heat Treat., 2018, 39(4): 31
(郭萍, 赵永庆, 洪权. 显微组织对TC4-DT钛合金疲劳裂纹扩展速率的影响 [J]. 材料热处理学报, 2018, 39(4): 31)
[6] Guo P, Zhao Y Q, Zeng W D, et al. The effect of microstructure on the mechanical properties of TC4-DT titanium alloys [J]. Mater. Sci. Eng., 2013, 563A: 106
[7] Lu W, Shi Y W, Lei Y P, et al. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy [J]. Mater. Des., 2012, 34: 509
doi: 10.1016/j.matdes.2011.09.004
[8] Feng B X, Mao X N, Yang G J. Residual stress field and thermal relaxation behavior of shot-peened TC4-DT titanium alloy [J]. Mater. Sci. Eng., 2009, 512A: 105
[9] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
[10] Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
(巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66)
[11] Li D C, Tian X Y, Wang Y X, et al. Developments of additive manufacturing technology [J]. Electromachin. Mould, 2012, (Suppl.1): 20
(李涤尘, 田小永, 王永信等. 增材制造技术的发展 [J]. 电加工与模具, 2012, (增刊): 20)
[12] Zhao J F, Ma Z Y, Xie D Q, et al. Metal additive manufacturing technique [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2014, 46: 675
(赵剑峰, 马智勇, 谢德巧等. 金属增材制造技术 [J]. 南京航空航天大学学报, 2014, 46: 675)
[13] Frazier W E. Metal additive manufacturing: a review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
[14] Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater., 2017, 132: 82
doi: 10.1016/j.actamat.2017.04.026
[15] Lu S L, Qian M, Tang H P, et al. Massive transformation in Ti-6Al-4V additively manufactured by selective electron beam melting [J]. Acta Mater., 2016, 104: 303
[16] Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
[17] Suo H B. Microstructure and mechanical properties of TC4 produced by electron beam rapid manufacturing [D]. Wuhan: Huazhong University of Science & Technology, 2014
(锁红波. 电子束快速成形TC4钛合金显微组织及力学性能研究 [D]. 武汉: 华中科技大学, 2014)
[18] Dong W, Huang Z T, Liu H M, et al. Crystal orientation distribution of TC18 titanium fabricated by electron beam wire deposition [J]. Chin. J. Mater. Res., 2017, 31: 203
(董伟, 黄志涛, 刘红梅等. 电子束成形TC18钛合金晶体取向规律研究 [J]. 材料研究学报, 2017, 31: 203)
[19] Wang B. Study on wire and arc additive manufacturing forming process of TC4 titanium alloy [D]. Shenyang: Shenyang Aerospace University, 2018
(王斌. TC4钛合金电弧熔丝沉积成形工艺研究 [D]. 沈阳: 沈阳航空航天大学, 2018)
[20] Ji L, Lu J P, Tang S Y, et al. Research on mechanisms and controlling methods of macro defects in TC4 alloy fabricated by wire additive manufacturing [J]. Materials, 2018, 11: 1104
[21] Shi X Z, Ma S Y, Liu C M, et al. Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti-6Al-4V alloy: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2017, 684A: 196
[22] Lin J J, Lv Y H, Liu Y X, et al. Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing [J]. Mater. Des., 2016, 102: 30
[23] Donoghue J, Antonysamy A A, Martina F, et al. The effectiveness of combining rolling deformation with Wire–Arc Additive Manufacture on β-grain refinement and texture modification in Ti-6Al-4V [J]. Mater. Charact., 2016, 114: 103
doi: 10.1016/j.matchar.2016.02.001
[24] Liu N. Research on Ti-6Al-4V shaped metal deposition by TIG welding with wire [D]. Harbin: Harbin Institute of Technology, 2013
(刘宁. TC4钛合金TIG填丝堆焊成型技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013)
[25] Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy [J]. Int. J. Adv. Manuf. Technol., 2011, 57: 597
[26] He Z. Effect of ultrasonic impact on the properties of arc additive manufacturing of titanium alloy [D]. Wuhan: Huazhong University of Science & Technology, 2016
(何智. 超声冲击电弧增材制造钛合金零件的组织性能研究 [D]. 武汉: 华中科技大学, 2016)
[27] Almeida P M S, Williams S. Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer (CMT) [A]. Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium [C]. Austin: University of Texas at Austin, 2010: 25
[28] Sun Z, Lv Y H, Xu B S, et al. Study on rapid prototyping technology based on CMT welding [J]. J. Acad. Arm. For. Eng., 2014, 28(2): 85
(孙哲, 吕耀辉, 徐滨士等. 基于CMT焊接快速成形工艺研究 [J]. 装甲兵工程学院学报, 2014, 28(2): 85)
[29] Zhang H T, Feng J C, Hu L L. Energy input and metal transfer behavior of CMT welding process [J] Mater. Sci. & Technol., 2012, 20(2): 128
(张洪涛, 冯吉才, 胡乐亮. CMT能量输入特点与熔滴过渡行为 [J]. 材料科学与工艺, 2012, 20(2): 128)
[30] Bontha S, Klingbeil N W, Kobryn P A, et al. Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures [J]. Mater. Sci. Eng., 2009, 513-514A: 311
[31] Vasinonta A, Beuth J L, Griffith M L. A process map for consistent build conditions in the solid freeform fabrication of thin-walled structures [J]. J. Manuf. Sci. Eng., 2001, 123: 615
[32] Bates B E, Hardt D E. A real-time calibrated thermal model for closed-loop weld bead geometry control [J]. J. Dyn. Sys., Meas., Control., 1985, 107: 25
[33] Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
[34] Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing-microstructure maps [J]. Acta. Mater., 2001, 49: 1051
doi: 10.1016/S1359-6454(00)00367-0
[35] Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification [J]. Acta Metall., 1986, 34: 823
doi: 10.1016/0001-6160(86)90056-8
[36] Rosenthal D. The theory of moving sources of heat and its application to metal treatments [J]. Trans. ASME, 1946, 68: 849
[37] Dykhuizen R, Dobranich D. Analytical Thermal Models for the LENS Process [R]. Albuquerque: Sandia National Laboratories Internal Report, 1998
[38] Vasinonta A. Process maps for melt pool size and residual stress in laser-based solid freeform fabrication [D]. Pennsylvania: Carnegie Mellon University, 2002
[39] Ahmed T, Rack H J. Phase transformations during cooling in α+β titanium alloys [J]. Mater. Sci. Eng., 1998, 243A: 206
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!