|
|
Microstructure and Columnar-equiaxed Transformation Prediction of TC4-DT Alloy Prepared by Arc Additive Manufacturing with Coaxial Wire Feeding of Cold Metal Transfer Mode |
DU Zijie1,2, LI Wenyuan2( ), LIU Jianrong2, SUO Hongbo3, WANG Qingjiang2 |
1.University of Science and Technology of China, Hefei 230026,China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016,China 3.Qingdao JointX Intelligent Manufacturing Limited, Qingdao 266109,China |
|
Cite this article:
DU Zijie, LI Wenyuan, LIU Jianrong, SUO Hongbo, WANG Qingjiang. Microstructure and Columnar-equiaxed Transformation Prediction of TC4-DT Alloy Prepared by Arc Additive Manufacturing with Coaxial Wire Feeding of Cold Metal Transfer Mode. Chinese Journal of Materials Research, 2020, 34(7): 518-526.
|
Abstract A TC4-DT Ti-alloy of two tracks and three layers was manufactured via arc additive manufacturing (CMT WAAM) coupled with cold metal transfer mode coaxial wire feeding, while the TC4-DT Ti-alloy wire of 1.2 mm in diameter was adoped as feeding wire. The microstructure of the acquired alloy was then characterized. Results show that fine equiaxed prior β-grains were found in the cambered heat affected zone; The bottom layer of the deposition zone consisted of thin columnar grains; The middle and top layers were composed of equiaxed grains and short columnar grains. Which was quite different from the coarse columnar grains produced by processes of EBRM and TIG WAAM. The microstructure of deposition zone presents basket weave α-phase laths, similar with that of EBRM and TIG WAAM. The 3D-Rosenthal solution was used to investigate the formation of the microstructure of the deposition zone. The maximum temperature gradient of the molten pool boundary calculated is about 12652.6 K/cm, and the maximum solidification speed is about 1.5 cm/s. The calculated solidification conditions just located in the mixed zone in the columnar-equiaxed-transformation (CET) model, consistent with the experiment results. The calculation results demonstrated that with the increasing input power P and the welding gun traveling speed V, the formation of equiaxed grains was promoted, while the grain size would gradually decrease with the increase of V. The mixed macrostructure would form when P>153 W and V>3.2 mm/s.
|
Received: 15 October 2019
|
|
[1] |
Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloy and Its Application [M]. Beijing: Chemical Industry Press, 2005: 1
|
|
(张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005: 1)
|
[2] |
Wang J Y. Titanium Alloy for Aviation [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1985: 1
|
|
(王金友. 航空用钛合金 [M]. 上海: 上海科学技术出版社, 1985: 1)
|
[3] |
Li L, Sun J K, Meng X J. Application state and prospects for titanium alloys [J]. Titanium Ind. Prog., 2004, 21(5): 19
|
|
(李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景 [J]. 钛工业进展, 2004, 21(5): 19)
|
[4] |
Liu W. Study on microstructure and tensile properties of TC4-DT titanium alloy forgings [J]. Heavy Cast. Forg., 2018, (3): 38
|
|
(刘卫. TC4-DT钛合金锻件组织与拉伸性能研究 [J]. 大型铸锻件, 2018, (3): 38)
|
[5] |
Guo P, Zhao Y Q, Hong Q. Effect of microstructure on fatigue crack propagation rate of TC4-DT titanium alloy [J]. Trans. Mater. Heat Treat., 2018, 39(4): 31
|
|
(郭萍, 赵永庆, 洪权. 显微组织对TC4-DT钛合金疲劳裂纹扩展速率的影响 [J]. 材料热处理学报, 2018, 39(4): 31)
|
[6] |
Guo P, Zhao Y Q, Zeng W D, et al. The effect of microstructure on the mechanical properties of TC4-DT titanium alloys [J]. Mater. Sci. Eng., 2013, 563A: 106
|
[7] |
Lu W, Shi Y W, Lei Y P, et al. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy [J]. Mater. Des., 2012, 34: 509
doi: 10.1016/j.matdes.2011.09.004
|
[8] |
Feng B X, Mao X N, Yang G J. Residual stress field and thermal relaxation behavior of shot-peened TC4-DT titanium alloy [J]. Mater. Sci. Eng., 2009, 512A: 105
|
[9] |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
|
[10] |
Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
|
|
(巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66)
|
[11] |
Li D C, Tian X Y, Wang Y X, et al. Developments of additive manufacturing technology [J]. Electromachin. Mould, 2012, (Suppl.1): 20
|
|
(李涤尘, 田小永, 王永信等. 增材制造技术的发展 [J]. 电加工与模具, 2012, (增刊): 20)
|
[12] |
Zhao J F, Ma Z Y, Xie D Q, et al. Metal additive manufacturing technique [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2014, 46: 675
|
|
(赵剑峰, 马智勇, 谢德巧等. 金属增材制造技术 [J]. 南京航空航天大学学报, 2014, 46: 675)
|
[13] |
Frazier W E. Metal additive manufacturing: a review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
|
[14] |
Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater., 2017, 132: 82
doi: 10.1016/j.actamat.2017.04.026
|
[15] |
Lu S L, Qian M, Tang H P, et al. Massive transformation in Ti-6Al-4V additively manufactured by selective electron beam melting [J]. Acta Mater., 2016, 104: 303
|
[16] |
Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
|
[17] |
Suo H B. Microstructure and mechanical properties of TC4 produced by electron beam rapid manufacturing [D]. Wuhan: Huazhong University of Science & Technology, 2014
|
|
(锁红波. 电子束快速成形TC4钛合金显微组织及力学性能研究 [D]. 武汉: 华中科技大学, 2014)
|
[18] |
Dong W, Huang Z T, Liu H M, et al. Crystal orientation distribution of TC18 titanium fabricated by electron beam wire deposition [J]. Chin. J. Mater. Res., 2017, 31: 203
|
|
(董伟, 黄志涛, 刘红梅等. 电子束成形TC18钛合金晶体取向规律研究 [J]. 材料研究学报, 2017, 31: 203)
|
[19] |
Wang B. Study on wire and arc additive manufacturing forming process of TC4 titanium alloy [D]. Shenyang: Shenyang Aerospace University, 2018
|
|
(王斌. TC4钛合金电弧熔丝沉积成形工艺研究 [D]. 沈阳: 沈阳航空航天大学, 2018)
|
[20] |
Ji L, Lu J P, Tang S Y, et al. Research on mechanisms and controlling methods of macro defects in TC4 alloy fabricated by wire additive manufacturing [J]. Materials, 2018, 11: 1104
|
[21] |
Shi X Z, Ma S Y, Liu C M, et al. Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti-6Al-4V alloy: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2017, 684A: 196
|
[22] |
Lin J J, Lv Y H, Liu Y X, et al. Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing [J]. Mater. Des., 2016, 102: 30
|
[23] |
Donoghue J, Antonysamy A A, Martina F, et al. The effectiveness of combining rolling deformation with Wire–Arc Additive Manufacture on β-grain refinement and texture modification in Ti-6Al-4V [J]. Mater. Charact., 2016, 114: 103
doi: 10.1016/j.matchar.2016.02.001
|
[24] |
Liu N. Research on Ti-6Al-4V shaped metal deposition by TIG welding with wire [D]. Harbin: Harbin Institute of Technology, 2013
|
|
(刘宁. TC4钛合金TIG填丝堆焊成型技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013)
|
[25] |
Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy [J]. Int. J. Adv. Manuf. Technol., 2011, 57: 597
|
[26] |
He Z. Effect of ultrasonic impact on the properties of arc additive manufacturing of titanium alloy [D]. Wuhan: Huazhong University of Science & Technology, 2016
|
|
(何智. 超声冲击电弧增材制造钛合金零件的组织性能研究 [D]. 武汉: 华中科技大学, 2016)
|
[27] |
Almeida P M S, Williams S. Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer (CMT) [A]. Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium [C]. Austin: University of Texas at Austin, 2010: 25
|
[28] |
Sun Z, Lv Y H, Xu B S, et al. Study on rapid prototyping technology based on CMT welding [J]. J. Acad. Arm. For. Eng., 2014, 28(2): 85
|
|
(孙哲, 吕耀辉, 徐滨士等. 基于CMT焊接快速成形工艺研究 [J]. 装甲兵工程学院学报, 2014, 28(2): 85)
|
[29] |
Zhang H T, Feng J C, Hu L L. Energy input and metal transfer behavior of CMT welding process [J] Mater. Sci. & Technol., 2012, 20(2): 128
|
|
(张洪涛, 冯吉才, 胡乐亮. CMT能量输入特点与熔滴过渡行为 [J]. 材料科学与工艺, 2012, 20(2): 128)
|
[30] |
Bontha S, Klingbeil N W, Kobryn P A, et al. Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures [J]. Mater. Sci. Eng., 2009, 513-514A: 311
|
[31] |
Vasinonta A, Beuth J L, Griffith M L. A process map for consistent build conditions in the solid freeform fabrication of thin-walled structures [J]. J. Manuf. Sci. Eng., 2001, 123: 615
|
[32] |
Bates B E, Hardt D E. A real-time calibrated thermal model for closed-loop weld bead geometry control [J]. J. Dyn. Sys., Meas., Control., 1985, 107: 25
|
[33] |
Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
|
[34] |
Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing-microstructure maps [J]. Acta. Mater., 2001, 49: 1051
doi: 10.1016/S1359-6454(00)00367-0
|
[35] |
Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification [J]. Acta Metall., 1986, 34: 823
doi: 10.1016/0001-6160(86)90056-8
|
[36] |
Rosenthal D. The theory of moving sources of heat and its application to metal treatments [J]. Trans. ASME, 1946, 68: 849
|
[37] |
Dykhuizen R, Dobranich D. Analytical Thermal Models for the LENS Process [R]. Albuquerque: Sandia National Laboratories Internal Report, 1998
|
[38] |
Vasinonta A. Process maps for melt pool size and residual stress in laser-based solid freeform fabrication [D]. Pennsylvania: Carnegie Mellon University, 2002
|
[39] |
Ahmed T, Rack H J. Phase transformations during cooling in α+β titanium alloys [J]. Mater. Sci. Eng., 1998, 243A: 206
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|