Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (6): 410-416    DOI: 10.11901/1005.3093.2019.552
ARTICLES Current Issue | Archive | Adv Search |
Microstructure Transformation Process of Lean Duplex Stainless Steel 2101 in Vertical Continuous Casting Slab
BAI Liang1,2(), JI Kun1,2, LIU Jingshun1,2, LIU Jun1,2, DONG Junhui1,2, NAN Ding1,2
1.Inner Mongolia University of Technology, Huhhot 010051, China
2.Inner Mongolia Key Laboratory of Graphite and Graphene for Energy Storage and Coating, Huhhot 010051, China
Cite this article: 

BAI Liang, JI Kun, LIU Jingshun, LIU Jun, DONG Junhui, NAN Ding. Microstructure Transformation Process of Lean Duplex Stainless Steel 2101 in Vertical Continuous Casting Slab. Chinese Journal of Materials Research, 2020, 34(6): 410-416.

Download:  HTML  PDF(7069KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The macro grain size distribution and microstructure change of the slab of Lean duplex stainless steel 2101 was investigated. It was concluded that columnar equiaxed crystal transformation (CET) occurred in the location, where is at the end of section No.2 of the secondary cooling zone with 25 mm from the slab surface. Decreasing the slab surface cooling strength in this zone will reduce internal temperature gradient in the shell, and promote CET transition, improve the rate of equiaxial crystal and expand the equiaxial zone at the corner. The results of microstructure analysis show that behind the section No. 6 in secondary cooling zone the morphology of austenite formed in the core of the billet can be adjusted by increasing the cooling intensity, which is also beneficial to the refinement of austenite morphology in the grain and at the grain boundary. Size of the acicular austenite structure at the grain boundary can be reduced, so as to improve the heat deformation ability of the billet.

Key words:  Metallic materials      Microstructure of slab      Experimental study      2101 duplex stainless steel      Transformation process     
Received:  26 November 2019     
ZTFLH:  TG142.1+1  
Fund: National Natural Science Foundation of China(51474143);Colleges and University Scientific Research Project of Inner Mongolia(NJZY19071);Scientific Research Project of Inner Mongolia(2015BS0510);Key Discipline Group Project of Materials, Science of Inner Mongolia University of Technology(ZD202012)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.552     OR     https://www.cjmr.org/EN/Y2020/V34/I6/410

Fig.1  Schematic diagram of the vertical continuous caster
LocationMoldFoot rollerNo.1No.2No.3No.4No.5No.6No.7
Length/mBroadNarrowBroadNarrow0.631.261.482.422.442.392.04
0.70.70.30.7
Cooling water/L·m-2·s-127502508.394.633.162.00.950.640.390.290.16
Table 1  Parameters of the continuous caster
CSiMnCrNiCuMoBNAl
0.0250.655.1521.41.420.30.220.0010.2050.003
Table 2  Chemical composition of 2101duplex stainless steel (%, mass fraction)
Fig.2  Cut direction and position of the sample on the slab
Fig.3  Microstructure of industrial continuous casting slab
Fig.4  Enlarged view of microstructure of No. 3
Fig.5  Temperature field and thickness growth of the slab
Fig.6  Microstructure at wide and narrow side of slab (a) Surface of wide side; (b) 15 mm from wide side surface; (c) 55 mm from wide side surface;(d) Surface of narrow side; (e) 15mm from narrow side surface; (f) 55 mm from narrow side surface
Fig.7  Competition growth (a) and termination (b) of columnar crystals
[1] Ornek C, Engelberg D L. Towards understanding the effect of deformation mode on stress corrosion cracking susceptibility of grade 2205 duplex stainless steel [J]. Mat. Sci. Eng. A-struct, 2016, 666: 269
doi: 10.1016/j.msea.2016.04.062
[2] Nilsson J O. Super Duplex Stainless Steels [J]. Mater. Sci. Tech., 1992, 8(8): 685
doi: 10.1179/mst.1992.8.8.685
[3] Singhal L K, Poojary P T, Kumar A. Comparative Evaluation of Low Nickel and Nickel Free Lean Duplex Stainless Steels with 316L in a Variety of Corrosive Media [J]. T. Indian I. Metals., 2013, 66(1): 25
doi: 10.1007/s12666-012-0164-3
[4] Iza-Mendia A, Pinol-Juez A, Urcola J J, et al. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions [J]. Metall Mater. Trans. A, 1998, 29 (12): 2975
doi: 10.1007/s11661-998-0205-z
[5] Atamert S, King J E. Super Duplex Stainless Steels 1. Heat Affected Zone Microstructures [J]. Mater. Sci. Tech., 1992, 8(10): 896
doi: 10.1179/mst.1992.8.10.896
[6] Wang J, Uggowitzer P J, Magdowski R, et al. Nickel-free duplex stainless steels [J]. Scripta Materialia, 1998, 40 (1): 123
doi: 10.1016/S1359-6462(98)00396-0
[7] Toor I H, Hyun P J, Kwon H S. Development of high Mn-N duplex stainless steel for automobile structural components [J]. Corrosion Sci., 2008, 50(2): 404
doi: 10.1016/j.corsci.2007.07.004
[8] Park J Y, Ahn Y S. Effect of Ni and Mn on the Mechanical Properties of 22Cr Micro-duplex Stainless Steel [J]. Acta. Metall. Sin., 2015, 28(1): 32
doi: 10.1007/s40195-014-0162-z
[9] Lilias M, Johansson P, Liu H P, et al. Development of a lean duplex stainless steel [J]. Steel. Res. Int., 2008, 79(6): 466
doi: 10.1002/srin.2008.79.issue-6
[10] Bassani P, Breda M, Brunelli K, et al. Characterization of a Cold-Rolled 2101 Lean Duplex Stainless Steel [J]. Microsc. Microanal., 2013, 19(4): 988
doi: 10.1017/S1431927613001426
[11] Liu Y, Yan H, Wang X, et al. Effect of hot deformation mode on the microstructure evolution of lean duplex stainless steel 2101 [J]. Mat. Sci. Eng. A-struct, 2013, 575: 41
doi: 10.1016/j.msea.2013.03.036
[12] Gao Z J, Li J Y, Feng Z H, et al. Influence of hot rolling on the microstructure of lean duplex stainless steel 2101 [J]. Int. J. Min. Met. Mater., 2019, 26(10): 1266
doi: 10.1007/s12613-019-1841-6
[13] Feng Z H, Li J Y, Wang Y D. Mechanism of hot-rolling crack formation in lean duplex stainless steel 2101 [J]. Int. J. Min. Met. Mater., 2016, 23(4): 425
doi: 10.1007/s12613-016-1252-x
[14] Patra S, Ghosh A, Singhal L K, et al. Hot Deformation Behavior of As-Cast 2101 Grade Lean Duplex Stainless Steel and the Associated Changes in Microstructure and Crystallographic Texture [J]. Metall Mater. Trans. A, 2017, 48A1): 294
[15] Maetz J Y, Cazottes S, Verdu C, et al. Microstructural Evolution in 2101 Lean Duplex Stainless Steel During Low- and Intermediate-Temperature Aging [J]. Microsc. Microanal., 2016, 22(2): 463
doi: 10.1017/S1431927616000167 pmid: 26940550
[16] Maetz J Y, Cazottes S, Verdu C, et al. Precipitation and Phase Transformations in 2101 Lean Duplex Stainless Steel During Isothermal Aging [J]. Metall Mater. Trans. A, 2016, 47A(1): 239
[17] Zhang L, Zhang W, Jiang Y, et al. Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101 [J]. Electrochim. Acta, 2009, 54(23): 5387
doi: 10.1016/j.electacta.2009.04.023
[18] He L, Jiang Y, Guo Y, et al. Electrochemical noise analysis of duplex stainless steel 2101 exposed to different corrosive solutions [J]. Corros. Eng. Sci. Techn., 2016, 51(3): 187
doi: 10.1179/1743278215Y.0000000048
[19] Hu Y, Li Y, He Y, et al. Effects of Micro-Sized Ferrite and Austenite Grains on the Pitting Corrosion Behavior of Lean Duplex Stainless Steel 2101 [J]. Metals, 2017, 7(5): 168
doi: 10.3390/met7050168
[20] Bai L. The research of microstructure and thermal stress in 2101 duplex stainless steel of the continuous catsing slab [D]. Shanghai: Shanghai University, 2016.
(白亮. 2101双相不锈钢连铸凝固过程组织与热应力研究[D]. 上海: 上海大学, 2016)
[21] Ameri A A H, Escobedo D J P, Ashraf M, et al. Investigating the Anisotropic Behaviour of Lean Duplex Stainless Steel 2101 [A]. Characterization of Minerals, Metals, and Materials 2017 [C]. San Diego: TMS Annual Meeting and Exhibition, 2017: 181
[22] Hu Y, Shi Y, Shen X, et al. Microstructure Evolution and Selective Corrosion Resistance in Underwater Multipass 2101 Duplex Stainless Steel Welding Joints [J]. Metall Mater. Trans. A, 2018, 49A(8): 3306
[23] Yin H, Emi T, Shibata H. Morphological instability of delta-ferrite/gamma-austenite interphase boundary in low carbon steels [J]. Acta Mater., 1999, 47(5): 1523
doi: 10.1016/S1359-6454(99)00022-1
[24] Zhou L L, Lin D W, Zhou C D, et al. In-situ observation of Delta/Gamma phase change process of duplex stainless steel at different cooling rates [J]. Shanghai Metal, 2007, 29(03): 19
(周磊磊, 林大为, 周灿栋等. 不同冷却速度下双相不锈钢δ/γ相变过程的原位观察 [J]. 上海金属, 2007, 29(03): 19)
[25] Maki T, Furuhara T, Tsuzaki K. Microstructure development by thermomechanical processing in duplex stainless steel [J]. ISIJ INT., 2001, 41(6): 571
doi: 10.2355/isijinternational.41.571
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!