|
|
Microstructure Transformation Process of Lean Duplex Stainless Steel 2101 in Vertical Continuous Casting Slab |
BAI Liang1,2( ), JI Kun1,2, LIU Jingshun1,2, LIU Jun1,2, DONG Junhui1,2, NAN Ding1,2 |
1.Inner Mongolia University of Technology, Huhhot 010051, China 2.Inner Mongolia Key Laboratory of Graphite and Graphene for Energy Storage and Coating, Huhhot 010051, China |
|
Cite this article:
BAI Liang, JI Kun, LIU Jingshun, LIU Jun, DONG Junhui, NAN Ding. Microstructure Transformation Process of Lean Duplex Stainless Steel 2101 in Vertical Continuous Casting Slab. Chinese Journal of Materials Research, 2020, 34(6): 410-416.
|
Abstract The macro grain size distribution and microstructure change of the slab of Lean duplex stainless steel 2101 was investigated. It was concluded that columnar equiaxed crystal transformation (CET) occurred in the location, where is at the end of section No.2 of the secondary cooling zone with 25 mm from the slab surface. Decreasing the slab surface cooling strength in this zone will reduce internal temperature gradient in the shell, and promote CET transition, improve the rate of equiaxial crystal and expand the equiaxial zone at the corner. The results of microstructure analysis show that behind the section No. 6 in secondary cooling zone the morphology of austenite formed in the core of the billet can be adjusted by increasing the cooling intensity, which is also beneficial to the refinement of austenite morphology in the grain and at the grain boundary. Size of the acicular austenite structure at the grain boundary can be reduced, so as to improve the heat deformation ability of the billet.
|
Received: 26 November 2019
|
|
Fund: National Natural Science Foundation of China(51474143);Colleges and University Scientific Research Project of Inner Mongolia(NJZY19071);Scientific Research Project of Inner Mongolia(2015BS0510);Key Discipline Group Project of Materials, Science of Inner Mongolia University of Technology(ZD202012) |
[1] |
Ornek C, Engelberg D L. Towards understanding the effect of deformation mode on stress corrosion cracking susceptibility of grade 2205 duplex stainless steel [J]. Mat. Sci. Eng. A-struct, 2016, 666: 269
doi: 10.1016/j.msea.2016.04.062
|
[2] |
Nilsson J O. Super Duplex Stainless Steels [J]. Mater. Sci. Tech., 1992, 8(8): 685
doi: 10.1179/mst.1992.8.8.685
|
[3] |
Singhal L K, Poojary P T, Kumar A. Comparative Evaluation of Low Nickel and Nickel Free Lean Duplex Stainless Steels with 316L in a Variety of Corrosive Media [J]. T. Indian I. Metals., 2013, 66(1): 25
doi: 10.1007/s12666-012-0164-3
|
[4] |
Iza-Mendia A, Pinol-Juez A, Urcola J J, et al. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions [J]. Metall Mater. Trans. A, 1998, 29 (12): 2975
doi: 10.1007/s11661-998-0205-z
|
[5] |
Atamert S, King J E. Super Duplex Stainless Steels 1. Heat Affected Zone Microstructures [J]. Mater. Sci. Tech., 1992, 8(10): 896
doi: 10.1179/mst.1992.8.10.896
|
[6] |
Wang J, Uggowitzer P J, Magdowski R, et al. Nickel-free duplex stainless steels [J]. Scripta Materialia, 1998, 40 (1): 123
doi: 10.1016/S1359-6462(98)00396-0
|
[7] |
Toor I H, Hyun P J, Kwon H S. Development of high Mn-N duplex stainless steel for automobile structural components [J]. Corrosion Sci., 2008, 50(2): 404
doi: 10.1016/j.corsci.2007.07.004
|
[8] |
Park J Y, Ahn Y S. Effect of Ni and Mn on the Mechanical Properties of 22Cr Micro-duplex Stainless Steel [J]. Acta. Metall. Sin., 2015, 28(1): 32
doi: 10.1007/s40195-014-0162-z
|
[9] |
Lilias M, Johansson P, Liu H P, et al. Development of a lean duplex stainless steel [J]. Steel. Res. Int., 2008, 79(6): 466
doi: 10.1002/srin.2008.79.issue-6
|
[10] |
Bassani P, Breda M, Brunelli K, et al. Characterization of a Cold-Rolled 2101 Lean Duplex Stainless Steel [J]. Microsc. Microanal., 2013, 19(4): 988
doi: 10.1017/S1431927613001426
|
[11] |
Liu Y, Yan H, Wang X, et al. Effect of hot deformation mode on the microstructure evolution of lean duplex stainless steel 2101 [J]. Mat. Sci. Eng. A-struct, 2013, 575: 41
doi: 10.1016/j.msea.2013.03.036
|
[12] |
Gao Z J, Li J Y, Feng Z H, et al. Influence of hot rolling on the microstructure of lean duplex stainless steel 2101 [J]. Int. J. Min. Met. Mater., 2019, 26(10): 1266
doi: 10.1007/s12613-019-1841-6
|
[13] |
Feng Z H, Li J Y, Wang Y D. Mechanism of hot-rolling crack formation in lean duplex stainless steel 2101 [J]. Int. J. Min. Met. Mater., 2016, 23(4): 425
doi: 10.1007/s12613-016-1252-x
|
[14] |
Patra S, Ghosh A, Singhal L K, et al. Hot Deformation Behavior of As-Cast 2101 Grade Lean Duplex Stainless Steel and the Associated Changes in Microstructure and Crystallographic Texture [J]. Metall Mater. Trans. A, 2017, 48A1): 294
|
[15] |
Maetz J Y, Cazottes S, Verdu C, et al. Microstructural Evolution in 2101 Lean Duplex Stainless Steel During Low- and Intermediate-Temperature Aging [J]. Microsc. Microanal., 2016, 22(2): 463
doi: 10.1017/S1431927616000167
pmid: 26940550
|
[16] |
Maetz J Y, Cazottes S, Verdu C, et al. Precipitation and Phase Transformations in 2101 Lean Duplex Stainless Steel During Isothermal Aging [J]. Metall Mater. Trans. A, 2016, 47A(1): 239
|
[17] |
Zhang L, Zhang W, Jiang Y, et al. Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101 [J]. Electrochim. Acta, 2009, 54(23): 5387
doi: 10.1016/j.electacta.2009.04.023
|
[18] |
He L, Jiang Y, Guo Y, et al. Electrochemical noise analysis of duplex stainless steel 2101 exposed to different corrosive solutions [J]. Corros. Eng. Sci. Techn., 2016, 51(3): 187
doi: 10.1179/1743278215Y.0000000048
|
[19] |
Hu Y, Li Y, He Y, et al. Effects of Micro-Sized Ferrite and Austenite Grains on the Pitting Corrosion Behavior of Lean Duplex Stainless Steel 2101 [J]. Metals, 2017, 7(5): 168
doi: 10.3390/met7050168
|
[20] |
Bai L. The research of microstructure and thermal stress in 2101 duplex stainless steel of the continuous catsing slab [D]. Shanghai: Shanghai University, 2016.
|
|
(白亮. 2101双相不锈钢连铸凝固过程组织与热应力研究[D]. 上海: 上海大学, 2016)
|
[21] |
Ameri A A H, Escobedo D J P, Ashraf M, et al. Investigating the Anisotropic Behaviour of Lean Duplex Stainless Steel 2101 [A]. Characterization of Minerals, Metals, and Materials 2017 [C]. San Diego: TMS Annual Meeting and Exhibition, 2017: 181
|
[22] |
Hu Y, Shi Y, Shen X, et al. Microstructure Evolution and Selective Corrosion Resistance in Underwater Multipass 2101 Duplex Stainless Steel Welding Joints [J]. Metall Mater. Trans. A, 2018, 49A(8): 3306
|
[23] |
Yin H, Emi T, Shibata H. Morphological instability of delta-ferrite/gamma-austenite interphase boundary in low carbon steels [J]. Acta Mater., 1999, 47(5): 1523
doi: 10.1016/S1359-6454(99)00022-1
|
[24] |
Zhou L L, Lin D W, Zhou C D, et al. In-situ observation of Delta/Gamma phase change process of duplex stainless steel at different cooling rates [J]. Shanghai Metal, 2007, 29(03): 19
|
|
(周磊磊, 林大为, 周灿栋等. 不同冷却速度下双相不锈钢δ/γ相变过程的原位观察 [J]. 上海金属, 2007, 29(03): 19)
|
[25] |
Maki T, Furuhara T, Tsuzaki K. Microstructure development by thermomechanical processing in duplex stainless steel [J]. ISIJ INT., 2001, 41(6): 571
doi: 10.2355/isijinternational.41.571
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|