Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (6): 401-409    DOI: 10.11901/1005.3093.2019.541
ARTICLES Current Issue | Archive | Adv Search |
Thermodynamical Explanation for Abnormal Dynamic Softening Rate of Ti-62A Alloy and Constitutive Equation of Strain Compensation
WANG Jingzhong1,2(), DING Kailun1, YANG Xirong1,2, LIU Xiaoyan1,2
1.College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi’an 710055, China
2.Shaanxi Metallurgical Engineering Technology Research Center, Xi'an University of Architecture and Technology, Xi'an 710055,China
Cite this article: 

WANG Jingzhong, DING Kailun, YANG Xirong, LIU Xiaoyan. Thermodynamical Explanation for Abnormal Dynamic Softening Rate of Ti-62A Alloy and Constitutive Equation of Strain Compensation. Chinese Journal of Materials Research, 2020, 34(6): 401-409.

Download:  HTML  PDF(6562KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot compression deformation behavior of Ti-62A alloy was investigated via Gleeble-3800 thermal simulator by strain rate of 0.001~10 s-1 at 800~950℃. The results show that the dynamic softening rate of Ti-62A alloy decreased with the increase of deformation temperature. This phenomenon existed in the thermal processing of other biphasic titanium alloy, α-titanium alloy and β-titanium alloy. According to the thermodynamic calculation results by Jmatpro software, the phenomenon of (α+β) biphasic titanium alloy is closely related to the decrease of the atomic activity of the main alloy elements Mo, Cr and other β stable elements with the increase of temperature and the increase of β phase ratio. The reason for the decrease of dynamic softening rate of α-titanium alloy and β-titanium alloy is more closely related to the increase of the β phase ratio with the increase of processing temperature. When the temperature rose from 800℃ to 950℃, the proportion of β phase in Ti-62A alloy increased from 32.1% to 84.3%, and the activity of Mo and Cr decreased by 64%, which thereby results in the decrease of grain boundary migration rate and dynamic softening rate of Ti-62A alloy. The true stress-strain curve at 950℃ is mostly a typical dynamic recovery type. The content of α phase decreases with the increase of deformation temperature, and the β grain size is relatively large at higher deformation temperature. The Arrhenius deformation resistance model of Ti-62A alloy was constructed based on strain compensation, with which the rheological stress behavior of Ti-62A alloy can be predicted well, correspondingly, the correlation coefficient R is 0.990, and the average relative error between the predicted value and the measured value is 8.983%.

Key words:  metallic materials      Ti-62A alloy      hot compression      activity calculation of alloying elements      microstructure      constitutive equation of strain compensation     
Received:  18 November 2019     
ZTFLH:  TG146.2+3  
Fund: National Natural Science Foundation of China(51474170)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.541     OR     https://www.cjmr.org/EN/Y2020/V34/I6/401

AlCrMoZnZrSiFeCNHOTi
5.25~6.251.75~2.251.75~2.251.75~2.251.75~2.250.20~0.27≤0.15≤0.04≤0.03≤0.0125≤0.13Bal.
Table 1  Chemical composition of Ti-62A titanium alloy (mass fraction, %)
Fig.1  Micrograph of the as received Ti-62A alloy
Fig.2  Flow stress curves of Ti-62A alloy under different deformation conditions (a) 0.001 s-1; (b) 0.01 s-1; (c) 0.1 s-1; (d) 1 s-1; (e) 10 s-1
Fig.3  Change of alloy element activity with temperature in titanium alloy (a) Ti-62A alloy; (b) TC11 alloy; (c) Commercially pure titanium; (d) TB17 alloy
Fig.4  Change of the ratio of α phase and β phase with temperature in titanium alloy (a) Ti-62A alloy; (b) Commercially pure titanium; (c) TB17 alloy
Fig.5  Microstructure of Ti-62A alloy deformed by hot compression at different temperatures with strain rate of 0.001 s-1 (a) 800℃, (b) 850℃, (c) 900℃, (d) 950℃
Fig.6  Microstructure of Ti-62A alloy deformed by hot compression at different temperatures with strain rate of 1 s-1 (a) 800℃, (b) 850℃, (c) 900℃, (d) 950℃
αnQlnA
C0=0.00924D0=1.91645E0=398.95592F0=36.20351
C1=0.01367D1=3.79583E1=-271.00142F1=-21.10215
C2=-0.05939D2=-13.6498E2=137.81848F2=-11.71244
C3=0.14321D3=31.05524E3=584.16655F3=112.84221
C4=-0.1574D4=-35.64127E4=-1548.1067F4=-209.55112
C5=0.06308D5=15.75986E5=960.56284F5=116.99094
Table 2  Constant fitting parameters of Ti-62A alloy
Fig.7  Comparison of the flow stress curves simulated with strain-compensated constitutive equations and experimental flow stress curves (a) 0.001 s-1; (b) 1 s-1
Fig.8  Correlation between calculated value of strain compensation equation and measured value of flow stress in Ti-62A alloy
[1] Cao C X. Change of material selection criterion and development of high damage-tolerant titanium alloy [J]. Acta. Metall. Sin., 2002, 38(S1): 4
(曹春晓. 选材判据的变化与高损伤容限钛合金的发展 [J]. 金属学报, 2002, 38(s1): 4)
[2] Fu Y Y, Song Y Q, Hui S X, et al. Research and Application of Typical Aerospace Titanium Alloys [J]. Chinese Journal of Rare Metals, 2006, 30(6): 850
[3] Li S K, Xiong B Q, Hui S X. Effects of cooling rate on the fracture properties of TA15 ELI alloy plates [J]. Rare Metals, 2007, 26(1): 33
doi: 10.1016/S1001-0521(07)60024-2
[4] Wood J R, Russo P A, Welter M F, et al. Thermomechanical processing and heat treatment of Ti-6Al-2Sn-2Zr-2Cr-2Mo-Si for structural applications [J]. Mater. Sci. Eng. A, 1998, 243(1-2): 109
doi: 10.1016/S0921-5093(97)00787-9
[5] Arrieta A J. Multidisciplinary Design Optimization of a Fighter Aircraft with Damage Tolerance Constraints and a Probabilistic Model of the Fatigue Environment [D]. America: University of Oklahoma Graduate College, 2001
[6] Yu Y, Hui S X, Ye W J, et al. Effect of heat treatment process on the mechanical properties of T-Al-Sn-Zr-Mo-Si-X series alloys [J]. Heat. Treat. Met, 2005, 30(12): 68
(于洋, 惠松骁, 叶文君等. 热处理对Ti-Al-Sn-Zr-Mo-Si-X系合金性能的影响 [J]. 金属热处理, 2005, 30(12): 68)
[7] Yu Y, Hui S X, Ye W J, et al. Mechanical properties and microstucture of an α+β titanium alloy with high strength and fracture toughnes [J]. Rare Metals, 2009, 28(4): 346
doi: 10.1007/s12598-009-0068-5
[8] Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1966, 14(9): 1136
doi: 10.1016/0001-6160(66)90207-0
[9] Li F G, Wang X N, Yu X L. A New Optimization Method of Constitutive Equation for Hot Working Based on Physical Simulation and Numerical Simulation[C]// Materials Science Forum. Trans Tech Publications, 2008: 402
[10] He X, Yu Z, Liu G, et al. Mathematical modeling for high temperature flow behavior of as-cast Ti-45Al-8.5 Nb-(W, B, Y) alloy [J]. Mater. Des, 2009, 30(1): 166
doi: 10.1016/j.matdes.2008.04.046
[11] Yu X, Li F, Li M. Modeling and optimization of general constitutive equation of semi-solid thixoforming [J]. Chin. J. Mech. Eng, 2007, 43(10): 72
[12] Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel [J]. Mater. Sci. Eng. A, 2009, 500(1-2): 114
doi: 10.1016/j.msea.2008.09.019
[13] Lin Y C, Chen M S, Zhong J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel [J]. Comp. Mater. Sci, 2008, 42(3): 470
doi: 10.1016/j.commatsci.2007.08.011
[14] WU W X, Li J, Jie D, et al. Prediction of flow stress of Mg-Nd-Zn-Zr alloy during hot compression [J]. T. Nonferr. Metal. Soc, 2012, 22(5): 1169
doi: 10.1016/S1003-6326(11)61301-0
[15] Jiang X L. Investigation of microstructure evolution and thermal deformation behavior of TC11 titanium alloy [D]. Shenyang: Northeastern University, 2011
(江想莲. TC11钛合金热变形行为及其组织演变规律的研究 [D]. 沈阳: 东北大学, 2011)
[16] Dai J. Hot Deformation Behavior and Processing Map of Titanium Alloy TC21 [D]. Nanchang: Nanchang Hangkong University, 2015
(戴俊. TC21钛合金热态变形行为及加工图 [D]. 南昌: 南昌航空大学, 2015)
[17] Zhang H F. Studies on High Temperature Deformation Mechanics Behavior of Ti-6Al-2Sn Alloy [D]. Taiyuan: North University of China, 2009
(张慧芳. Ti-6Al-2Sn钛合金高温变形力学行为研究 [D]. 太原:中北大学, 2009)
[18] Liu K, Huang H G, Qin T C, et al. High temperature compression deformation behavior and microstructure evolution of TC4 titanium alloy [J]. Special Casting & Nonferrous Alloys, 2019, (9): 936
(刘昆, 黄海广, 秦铁昌等. TC4钛合金高温压缩变形行为与组织演变 [J]. 特种铸造及有色合金, 2019, (9): 936)
[19] Chai X Y, GAO Z Y, Pan T, et al. Constitutive equation for flow behavior of commercially pure titanium TA2 during hot deformation [J]. Chinese Journal of Engineering, 2018, 40(2): 226
(柴希阳, 高志玉, 潘涛等. 工业纯钛TA2热变形过程的流变行为本构方程 [J]. 工程科学学报, 2018, 40(2): 226)
[20] Ren W B, Li J, Yu H, et al. Hot Deformation Behaviors and Processing Map of TA17 Titanium Alloy [J]. Iron Steel Vanadium Titanium, 2017, 38(2): 46
(任万波, 李军, 于辉等. TA17 钛合金热变形行为及加工图 [J]. 钢铁钒钛, 2017, 38(2): 46)
[21] Yang J, Wang Y Q, Li X M, et al. Study on hot deformation behavior and processing map of TA15 titanium alloy [J]. China Titanium Industry, 2015(2): 29
(杨军, 王永强, 李献民等. TA15钛合金热变形行为及加工图研究 [J]. 中国钛业, 2015 (2): 29)
[22] Xiong Y S, Wang Q Q, Xiang W, et al. Hot deformation behavior of TA15 titanium alloy for aerospace [J]. Journal of Plasticity Engineering, 2017(3): 184
(熊运森, 王茜茜, 向伟等. 航空用TA15钛合金热变形行为研究 [J]. 塑性工程学报, 2017(3): 184)
[23] Zhou S W. Study on hot deformation behavior and microstructure evolution simulation of TB17 titanium alloy [D]. Nanchang: Nanchang Hangkong University, 2018
(周盛武. TB17钛合金热变形行为及显微组织演变模拟研究 [D]. 南昌: 南昌航空大学, 2018)
[24] He D. Study on Hot Deformation Behavior and Processing Map of a New β Titanium Alloy Based on Friction Correction [D]. Xi'an: Xi'an University of architecture and technology, 2016
(何丹. 基于摩擦修正的新型β钛合金热变形行为与加工图研究 [D]. 西安:西安建筑科技大学, 2016)
[25] Pu E, Feng H, Liu M, et al. Constitutive modeling for flow behaviors of super-austenitic stainless steel S32654 during hot deformation [J]. J. Iron. Steel. Res. Int, 2016, 23(2): 178
doi: 10.1016/S1006-706X(16)30031-0
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!