Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (4): 313-320    DOI: 10.11901/1005.3093.2018.403
Current Issue | Archive | Adv Search |
Friction and Wear Behavior of Niobium Alloyed Medium Chromium Wear-resistant Cast Steel
Tuo ZHANG,Lvdan TENG,Qiyu ZANG,Yitao YANG()
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Cite this article: 

Tuo ZHANG,Lvdan TENG,Qiyu ZANG,Yitao YANG. Friction and Wear Behavior of Niobium Alloyed Medium Chromium Wear-resistant Cast Steel. Chinese Journal of Materials Research, 2019, 33(4): 313-320.

Download:  HTML  PDF(19874KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tribological behavior of experimental medium chromium wear-resistant cast steels with different niobium addition was investigated by using the MM-W1 pin-on-disc friction and wear tester at room temperature. The microstructure of the worn surface and subsurface were characterized by means of scanning electron microscopy and energy dispersive spectrometer, aiming to reveal the effect of Nb content on the wear behavior and mechanism for the steels. The results show that the addition of 0.2% (mass fraction) Nb can effectively increase the wear resistance of the steel due to the formation of discontinuous rod-like Nb carbides and the effect of grain refinement. An excess addition of Nb can reduce the wear resistance due to the occurrence of coarse mesh carbides and microstructural distortions, which then causes spallation of the worn surface. The 0.2%Nb test steel presented an evolvement of wear mechanism from slight abrasive wear to adhesive wear and oxidation wear.

Key words:  metallic materials      niobium content      medium chromium wear-resistant cast steel      carbide      wear mechanism     
Received:  22 June 2018     
ZTFLH:  TH117.1  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.403     OR     https://www.cjmr.org/EN/Y2019/V33/I4/313

No.CSiMnCrMoNbFe
10.470.981.494.840.800Bal.
20.461.141.514.790.840.19Bal.
30.461.131.484.830.790.47Bal.
Table 1  Chemical composition of test wear-resistant cast steels (mass fraction, %)
Fig.1  Diagram of pin-on-disk structure
Fig.2  Wear loss of test steel with different Nb content
Fig.3  Worn surface under condition of 200 N and 0.5 m/s, (a) 0Nb, (b) 0.2 %Nb, (c) 0.5%Nb, (d) oxygen element EDS analysis in rectangular area in figure 3a
OSiCrMnMoNbFe
A30.980.472.220.590.47-65.27
B13.000.762.860.591.340.1481.31
C13.940.954.191.480.710.4878.25
Table 2  EDS analysis of worn surface elements with different Nb contents (mass fraction, %)
Fig.4  Carbide morphology and grain size of test steel (a) (b) 0Nb, (c) (d) 0.2% Nb, (e) (f) 0.5%Nb
Nb content /mass fraction, %00.20.5
Hardness/HRC57.357.557.6
Carbide content/%2.22.52.9
Main type of carbide(Cr,Fe)7C3NbCNbC
Average grain size/μm35.016.717.3
Table 3  Hardness, carbide, grain size of test steel with different Nb content
Fig.5  SEM graphs of cross-section under the worn surface under parameters of 200 N and 0.5 m/s (a) 0Nb, (b) 0.2%Nb, (c) 0.5%Nb, (d) cracked carbide morphology in 0.5% Nb steel
Fig.6  Friction coefficient of 0.2%Nb test steel under different loads (a) friction coefficient curve, (b) change in friction coefficient
Fig.7  Wear morphology under different loads of 0.2%Nb (a) 100 N, (b) 200 N, (c) 300 N, (d) EDS analysis of points A and B in fig.7c
Fig.8  SEM graphs of cross-section under the worn surface of 0.2%Nb steel (a) 100 N, (b) 200 N, (c) 300 N
[1] BernsH, TrojahnW. New cold working tool steels [J]. Interciencia, 1986, 29(12): 660
[2] FilipovicM, KamberovicZ, KoracM, et al. Microstructure and mechanical properties of Fe-Cr-C-Nb white cast irons [J]. Mater. Des., 2013, 47(11): 41
[3] ZhiX, XingJ, FuH, et al. Effect of niobium on the as-cast microstructure of hypereutectic high chromium cast iron [J]. Mater. Lett., 2008, 62(6-7): 857
[4] FisetM, PeevK, RadulovicM. The influence of niobium on fracture toughness and abrasion resistance in high-chromium white cast irons [J]. J. Mater. Sci. Lett., 1993, 12(9): 615
[5] FuH G. 500 Questions of Wear-resistant Material [M]. Beijing: China Machine Press, 2011
[5] (符寒光. 耐磨材料500问 [M]. 北京: 机械工业出版社, 2011)
[6] MaalekianM, RadisR, MilitzerM, et al. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyedsteel [J]. Acta Mater., 2012, 60(3): 1015
[7] ZhouL H, WeiX C, WangC Y, et al. Relationship between dry sliding tribological behavior and grain sizes for T10 Steel [J]. Chin. J. Mater. Res., 2017, 31(11): 833
[7] (周路海, 韦习成, 王春燕等. T10钢的干滑动摩擦学行为与晶粒尺寸的关系 [J]. 材料研究学报, 2017, 31(11): 833)
[8] WangS Q, JiangQ C, SuiX M, et al. Wear resistance of ledeburite cast die steel with granular carbide [J]. Tribology, 1999, 19(1): 33
[8] (王树奇, 姜启川, 隋学民等. 具有粒状碳化物的莱氏体型铸造模具钢的耐磨性研究 [J]. 摩擦学学报, 1999, 19(1): 33)
[9] ZhangT, CaoJ, TengL D, et al. Effect of Nb on microstructure and mechanical properties of medium Cr wear-resistant cast steel [J]. China Foundry, 2017, 66(10): 1100
[9] (张 拓, 曹 静, 滕铝丹等. Nb对中铬耐磨铸钢组织及力学性能的影响 [J]. 铸造, 2017, 66(10): 1100)
[10] CITIC microalloying technology center. Niobium Science & Technology [M]. Beijing: Metallurgical Industry Press, 2003
[10] (中信微合金化技术中心. 铌·科学与技术 [M]. 北京: 冶金工业出版社, 2003)
[11] RubtsovV E,KolubeavA V. Plastic deformation and quasi-pe-riodic vibrations in a tribological system [J]. Tech. Phys., 2004, 49 (11): 1457
[12] RubtsovV E, KolubeavA V. Study of plastic shear deformation in surface layer at friction. Simulation results Part I. Model description [J]. J. Frict. Wear, 2007, 28(1): 65
[13] TrummerG, MarteC, ScheriauS, et al. Modeling wear and rolling contact fatigue: Parametric study and experimental results [J]. Wear, 2016, 366: 71
[14] ShiZ, BloyceA, SunY, et al. Influence of surface melting on dry rolling-sliding wear of aluminium bronze against steel [J]. Wear, 1996, 198(1-2): 300
[15] KimH J, EmgeA, WinterR E, et al. Nanostructures generated by explosively driven friction: Experiments and molecular dynamics simulations [J]. Acta Mater., 2009, 57(17): 5270
[16] WangW, SongR, PengS, et al. Multiphase steel with improved impact-abrasive wear resistance in comparison with conventional Hadfield steel [J]. Mater. Des., 2016, 105: 96
[17] YinC, LiangY, JiangY, et al. Formation of nano-laminated structures in a dry sliding wear-induced layer under different wear mechanisms of 20CrNi2Mo steel [J]. Appl. Surf. Sci., 2017, 423: 305
[18] SuhN P. An overview of the delamination theory of wear [J]. Wear, 1977, 44(1): 1
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!