Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (4): 306-312    DOI: 10.11901/1005.3093.2018.422
Current Issue | Archive | Adv Search |
High Temperature Creep Characteristics of In-Situ Micro-/Nano-meter TiC Dispersion Strengthened 304 Stainless Steel
Zifei NI1,2(),Feng XUE1
1. School of Material Science and Engineering, Southeast University, Nanjing 211189, China
2. Jiangsu Key Laboratory for Structural and Functional Metal Materials Composites, Taizhou 225721, China
Cite this article: 

Zifei NI,Feng XUE. High Temperature Creep Characteristics of In-Situ Micro-/Nano-meter TiC Dispersion Strengthened 304 Stainless Steel. Chinese Journal of Materials Research, 2019, 33(4): 306-312.

Download:  HTML  PDF(15727KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Micro-/nano-metered TiC particulates dispersion strengthened 304 stainless steel (TiC-304SS strengthened steel) were prepared by in-situ reaction technology with 2% and 5% TiC (in volume fraction) respectively. The high temperature creep properties of the plain 304SS and two TiC-304SS strengthened steels were investigated. The results show that the in situ formed TiC particulates, most of which exhibited polygonal shape, were distributed uniformly in the matrix of 304 SS and are well bonded with the matrix. Moreover, TiC particulates present a significant effect on the grain refinement of the steel matrix. It reveals that being subjected to creep test by100 MPa at 700oC for 200 h, the grains of the plain 304SS grew up evidently with elongated shape along the loading direction, in the contrary, the grain growth tendency of the TiC-304SS strengthened steels seems to be inhibited, thereby, the creep deformation was effectively reduced. The above results imply that dislocation motion in the three steels accords with dislocation climb mechanism. Besides, the values of apparent creep stress exponent and activate energy of the two TiC-304 strengthened steels are higher than that of the plain 304SS. It is proposed that the enhancement of creep performance of TiC-304SS strengthened steel may be ascribed to the enhanced threshold stress and load transfer barrier, as well as the microstructural strengthening effect.

Key words:  metallic materials      TiC strengthened steel      high temperature creep      stress exponent      creep activation energy      threshold stress     
Received:  02 July 2018     
ZTFLH:  TG142  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.422     OR     https://www.cjmr.org/EN/Y2019/V33/I4/306

Fig.1  Optical micrographs of the steels (a) 304SS; (b) 2TiC-304SS; (c) (d) 5TiC-304SS as forged and heat-treated
Fig.2  TEM image of nano-scale TiC particles in 5TiC-304SS (a) and the corresponding electron diffraction pattern (b)
Fig.3  Creep curves (a) and minimum creep rates and 200 h creep strains (b) of three steels at 700℃/ 100 MPa
Fig.4  Optical micrographs of the steels (a) 304SS; (b) 2TiC-304SS; (c) 5TiC-304SS after creep at 700℃/100 MPa
Fig.5  TEM micrographs showing dislocations in 304steelbefore (a) and after (b) creep at 700℃/100 MPa
Fig.6  TEM micrographs of 5TiC-304SS after creep at 700℃/100 MPa
Fig.7  Relation curve between minimum creep rate and applied stress of three steels
Fig.8  Relation curve between minimum creep rate and temperature of three steels
AlloynQ/kJ·mol-1
3045.1308.8
2TiC-3045.5345.6
5TiC-3046.1384.5
Table 1  Stress exponent n and creep activiation energy Q of three steels
Fig.9  Threshold stresses of three steels
[1] WuC L, ZhangS, ZhangC H, et al. Formation mechanism and phase evolution of in situ synthesizing TiC-reinforced 316L stainless steel matrix composites by laser melting deposition [J]. Materials Letters, 2018, 15(217): 304
[2] DasK, BandyopadhyayT K, ChatterjeeS. Synthesis and characterization of austenitic steel matrix composite reinforced with in-situ TiC particles [J]. Journal Materials Science Letters, 2005, 40(18): 5007
[3] WuQ L, SunY S, YangC D, et al. Microstructure and mechanical properties of common straight carbon steels strengthened by TiC dispersion [J]. Materials Transactions, 2006, 47: 2393
[4] Lahouel,A, Boudebane,S, Iost,A, et al. A new method to fabricate Fe-TiC composite using conventional sintering and steam hammer [J]. International Journal of Engineering Research in Africa, 2017, 29: 28
[5] Liu,Z L, Liu,X Q, Jiang,X D. Investigation on the Fe-based PM materials reinforced by In Situ synthesized TiC particulates [J]. Particulate Science and Technology, 2017, 35(6): 653
[6] OlejnikE, SzymanskiL, KurtykaP, et al. Hardness and Wear resistance of TiC-Fe-Cr locally reinforcement produced in cast steel[J]. Archives of Foundry Engineering, 2016, 16(2): 89
[7] WangJ, FuS J, DingY C. Microstructure and wear property of TiC particles reinforced iron matrix composite produced in-situ [J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(5): 111
[7] (王 静, 伏思静, 丁义超. 原位合成TiC/Fe基复合材料的组织结构和磨损性能 [J]. 四川大学学报(工程科学版), 2008, 40(5): 111)
[8] SobulaS, OlejnikE, TokarskiT. Wear resistance of TiC reinforced cast steel matrix composite [J]. Archives of Foundry Engineering,2017, 17(1): 143
[9] NiZ F, SunY S, XueF, et al. Study on fabrication, microstructure and properties of in situ TiC particle on dispersion-strengthened 304 stainless steel [J]. Acta Metallurgica Sinica, 2010, 46(8): 935
[9] (倪自飞, 孙扬善, 薛 烽等. 原位TiC颗粒弥散强化304不锈钢的制备及组织性能研究 [J]. 金属学报, 2010, 46(8): 935)
[10] NiZ F, SunY S, XueF, et al. Evaluation of electroslag remelting in TiC particle reinforced 304 stainless steel [J]. Materials Science and Engineering A, 2011, 528(18): 5664
[11] BlumW. On the evolution of the dislocation structure during work hardening and creep [J]. Scripta Metallurgica, 1984, 18(12): 383
[12] GuyA G, HrenJ J. Translated by XU J N. Physical Metallurgy Principles [M]. Beijing :China Machine Press, 1981
[12] (GuyA G, HrenJ J. 徐纪楠译. 物理冶金学原理 [M]. 北京: 机械工业出版社, 1981)
[13] EvansR W, WilshireB. Creep of Metals and Alloys [M]. London: The Institute of Metals, 1985
[14] XuZ Y, LiP X. Introduction to Materials Science [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1986
[14] (徐祖耀, 李鹏兴. 材料科学导论 [M]. 上海: 上海科学技术出版社, 1986)
[15] MengL J, XingH, PangG W, et al. High-temperature creep and fatigue behaviors of AL6XN super austenite steel [J]. Atomic Energy Science and Technology, 2009, 43 (6): 509
[15] (孟丽君, 邢 辉, 庞淦文等. AL6XN超级奥氏体钢的高温蠕变及疲劳行为研究 [J]. 原子能科学技术, 2009, 43(6): 509)
[16] ZhouQ, MaZ Y, ZhaoJ, et al. Creep deformation and fracture of dispersoids and SiC articulates reinforced Al base composites [J]. Acta Metallurgica Sinica, 1998, 34(1): 107
[16] (周 清, 马宗义, 赵 杰等. 弥散质点和SiC颗粒复合强化铝基复合材料蠕变形变与断裂 [J]. 金属学报, 1998, 34(1): 107)
[17] RanganathS, MishraRS. Steady state creep behavior of particulate-reinforced titanium matrix composites [J].Acta Materialia.1996, 44(3): 927
[18] WeiX W, ZuX T, FuH. Compressive creep resistance of Mg-14Li-Al-MgO/Mg2Si composites [J]. Materials Science and Technology, 2006, 22(8): 903
[19] ZongB Y, DerbyB. Creep behaviour of a SiC particulate reinforced Al-2618 metal matrix composite [J]. Acta Materialia, 1997, 45(1): 41
[20] MaZ Y, TjongS C. Creep deformation characteristics of discontinuously reinforced aluminium-matrix composites[J]. Composites Science & Technology, 2001, 61(5): 771
[21] ChenJ, WangZ F, BianJ H, et al. High temperature creep behavior of Fe-Cr-Ni base composites reinforced by in situ TiC particulates [J]. Acta Metallurgica Sinica, 2001, 37(2): 207
[21] (陈 俊, 王执福, 边建华等. 原位TiC颗粒增强Fe-Cr-Ni基复合材料的高温蠕变行为 [J]. 金属学报, 2001, 37(2): 207)
[22] NiZ F, Sun,Y S, XueF, et al. Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate [J]. Materials and Design, 2011, 32(3): 1462
[23] WuQ L, SunY S, XueF, et al. High temperature behaviour of TiC particulate reinforced 304 stainless steel by in situ reaction and electroslag remelting [J]. Ironmaking and Steelmaking, 2010, 37(5): 326
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!