Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (3): 232-240    DOI: 10.11901/1005.3093.2018.432
Current Issue | Archive | Adv Search |
High Temperature Plastic Deformation Behavior and Hot Workability of an Alumina-forming Austenitic Heat-resisting Alloy
Yutong YANG,Rui LUO(),Xiaonong CHENG,Xiang GUI,Leli CHEN,Wei WANG,Qi ZHENG
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Cite this article: 

Yutong YANG,Rui LUO,Xiaonong CHENG,Xiang GUI,Leli CHEN,Wei WANG,Qi ZHENG. High Temperature Plastic Deformation Behavior and Hot Workability of an Alumina-forming Austenitic Heat-resisting Alloy. Chinese Journal of Materials Research, 2019, 33(3): 232-240.

Download:  HTML  PDF(29707KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The deformation behavior of a new alumina-forming austenitic stainless steel (AFA) was investigated by means of isothermal hot compression test with a strain rate range of 0.01~5 s-1 at 950~1150℃, as well as OM and EBSD characterization. The hot processing map of the AFA steel was established based on dynamic material model. The influence of deformation parameters on the processability of the steel was also analyzed. Besides, the thermal deformation mechanism diagram was also constructed according to the deformation characteristics of different regions. The results show that the high temperature flow stress of the new AFA steel is significantly affected by the deformation temperature and strain rate. Serious flow instability can be observed at 950~1150℃ with strain rates of 0.18~5 s-1. Fully dynamic recrystallization occurred under the deformation conditions of 1050~1120℃ and 0.01~0.1 s-1 or 1120~1150℃ and 10-0.5~10-1.5 s-1. The recrystallized grains are fine and homogeneous with the power dissipation factor η reaching the peak value of 45%. It is proposed that the recrystallization zone should be preferentially selected and the flow instability zone should be avoided in order to establish a reasonable hot processing system.

Key words:  metallic materials      Austenitic heat-resisting alloy      hot deformation      dynamic recrystallization      deformation mechanism     
Received:  03 July 2018     
ZTFLH:  TG142.73  
Fund: Supported by National High-tech R & D Program (863 Program)(2012AA03A501);Jiangsu Province's Graduate Research Innovation Plan for 2014(KYLY-1027)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.432     OR     https://www.cjmr.org/EN/Y2019/V33/I3/232

CSiMnSPNiCrNbMoAlBN
0.0680.350.590.0120.00230.9217.480.391.522.470.010.026
Table 1  Chemical Composition of experimental steel (mass fraction, %)
Fig.1  Flow stress curves of AFA alloy obtained at different temperatures with strain rate of 0.1 s-1 (a) and at 1050℃ with different strain rates (b)
Fig.2  EBSD grain orientation maps of AFA alloy with strain of 0.8 and strain rate of 0.01 s-1 at: (a) 950℃, (b) 1000℃, (c) 1100℃
Fig.3  EBSD grain orientation maps of AFA alloy at strain of 0.8 with temperature of 1050℃ with strain rates of (a) 0.01 s-1, (b) 0.1 s-1 and (c) 10 s-1
Fig.4  Processing maps obtained on AFA alloy at the strain of 0.3 (a), 0.4 (b), 0.5 (c) and 0.6 (d) (the contours represent efficiency of power dissipation, shadow represent flow instability area)
Fig.5  Variation of η with the strain at deformation temperatures of 1000℃ (a), 1050℃ (b), 1100℃ (c) and 1150℃ (d) with different strain rates
Fig.6  Dynamic recrystallization microstructure of AFA alloy in peak η region: (a)1100℃ and 0.01 s-1; (b) 1150℃ and 0.1 s-1
Fig.7  Processing map of AFA alloy with the strain of 0.6
Fig.8  OM image of microstructure under the deformation condition of 950℃ and 5 s-1
Fig.9  OM image of microstructures hot deformed at (a) 1150℃ and 5 s-1, (b) 1150℃ and 0.01 s-1
Fig.10  Instable microstructure of AFA alloy (a) 950℃、1 s-1; (b) 1000℃、0.5 s-1; (c) 1050℃、0.5 s-1; (d) 1100℃、0.5 s-1
Fig.11  OM image of microstructures hot deformed at (a) 950℃ and 0.01 s-1, (b) 1000℃ and 0.1 s-1
Fig.12  Hot deformation machanism diagram of AFA alloy
[1] ChengX N, DaiQ X, LiD S. Developments of new materials used for key tube in unclear equipment [J]. Heat Treatment of Metals, 2010, 35(12): 21
[1] (程晓农, 戴起勋, 李冬升. 核电装备关键管材新材料研究进展 [J]. 金属热处理, 2010, 35(12): 21)
[2] RamakrisnanV, McgurtyJ A, JayarmanN. Oxidation of high-aluminum austenitic stainless steels [J]. Oxidation metals, 1988, 30(3-4): 185
[3] YamamotoY, BradyM P, LuZ P, et al. Creep-resistant Al2O3-forming austenitic stainless steels [J]. Science, 2007, 316(5823): 433
[4] NieS. H., ChenY., RenX., et al. Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water [J]. Journal of Nuclear Materials, 2010, 399(2): 231
[5] YamamotoY, MuralidharanG, BradyM P. Development of L12-ordered Ni3 (Al, Ti)-strengthened alumina-forming austenitic stainless steel alloys [J]. Scripta Materialia, 2013, 69(11-12): 816
[6] LuoR, ChengX N, ZhengQ, et al. Dynamic recrystallization behavior of an alumina-forming austenitic alloy Fe-20Cr-30Ni-0.6Nb-2Al-Mo [J]. Materials Review, 2017, 31(18): 136
[6] (罗 锐, 程晓农, 郑 琦, 朱晶晶等. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为 [J]. 材料导报, 2017, 31(18): 136)
[7] BeiH, YamamotoY, BradyM P, et al. Aging effects on the mechanical properties of alumina-forming austenitic stainless steels [J]. Materials Science & Engineering A, 2010, 527(7-8): 2079
[8] DharmendraC., RaoK. P., ZhaoF., et al. Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32-0.4Al magnesium alloy [J]. Materials Science and Engineering: A, 2014, 606: 11
[9] AnetaLukaszek-Solek, JanuszKrawczyk. The analysis of the hot deformation behavior of the Ti-3Al-8V-6Cr-4Zr-4Mo alloy, using processing maps, a map of microstructure and of hardness [J]. Materials and Design, 2015, 65: 165
[10] CAOY. Research of Microstructure Evolution Law and Hot Working Technology for Alloy 800H [D]. Shen Yang: Northeastern University, 2011
[10] (曹 宇. 800H合金组织演变规律与热加工工艺研究 [D]. 沈阳: 东北大学, 2011)
[11] PrasedY. V. R. K.. Moeling of dynamic material behavior in hot deformation: forging of Ti-242 [J]. Metallurgical and Materials Transactions A, 1984, 15A: 1883
[12] PrasedY. V. R. K.. Dynamic materials model: Base and principles [J], Metallurgical and Materials Transactions A, 1996, 27: 235
[13] KaramiM., MahmudiR.. Hot shear deformation constitutive analysis and processing map of extruded Mg-12Li-1Zn bcc alloy [J]. Materials and Design, 2014, 53: 534
[14] ZieglerH, CarlsonD E. An Introduction to Thermomechanics [J]. Applied Mathematics & Mechanics, 1977, 45(4): 996
[15] YuM, NiuZ J, MaoJ H, et al. Processing maps of Ti-50-9Ni shape memory alloy under different strains and instability criteria [J]. Chinese Journal of Raremetals, 2013, 37(5): 702
[15] (于 孟, 牛中杰, 毛江虹等. 不同应变及失稳准则Ti-50.9Ni合金加工图研究 [J]. 稀有金属, 2013, 37(5): 702)
[16] XinS, JieZ, XunW, et al. Optimizing and identifying the process parameters of AZ31 magnesium alloy in hot compression on the base of processing maps [J]. Journal of Alloys and Compounds, 2015, 629: 155
[17] JuQ, LiD G, LiuG Q. The processing map of hot plastic deformation of a 15Cr-25Ni-Fe base superalloy [J]. Acta Metallurgica Sinica, 2006, 42(2): 218
[17] (鞠 泉, 李殿国, 刘国权. 15Cr-25Ni-Fe基合金高温塑性变形行为的加工图 [J]. 金属学报, 2006, 42(2): 218)
[18] WuH., WenS. P., HuangH., et al. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy [J]. Journal of Alloy and Compounds, 2016, 685: 869
[19] LiQ B, HouH T, JiangY F, et al. Research status quo and prospect of the theory of shop drawing [J]. Nonferrous Metals Engineering and Research, 2009, 30(4): 1
[19] (李庆波, 周海涛, 蒋永峰等. 加工图的理论研究现状与展望 [J]. 中国有色金属设计与研究, 2009, 30(4): 1)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!