Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (3): 225-231    DOI: 10.11901/1005.3093.2018.338
Current Issue | Archive | Adv Search |
Diffusion Behavior of Cu in Carbon Steel and Its Influence on Corrosion Resistance of Carbon Steel
Tao MA,Huirong LI,Jianxin GAO,Yungang LI()
College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063009, China
Cite this article: 

Tao MA,Huirong LI,Jianxin GAO,Yungang LI. Diffusion Behavior of Cu in Carbon Steel and Its Influence on Corrosion Resistance of Carbon Steel. Chinese Journal of Materials Research, 2019, 33(3): 225-231.

Download:  HTML  PDF(3540KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The copper coating was deposited on the surface of carbon steel by electroplating method, and then annealed at high temperature. The diffusion coefficient of Cu in carbon steel were calculated by the Den-Broeder method, while the influence of Cu-metalizing on the corrosion resistance of carbon steel was investigated. Results show that the inward diffusion of Cu is mainly along grain boundaries of the carbon steel, while the diffusion of Cu will inhibit the growth of grains of the steel during heat treatment. The diffusion coefficient of Cu in carbon steel limits between 1.11×10-16~3.03×10-11 cm2/s, which increases with the increasing annealing temperature and decreases with the increasing Cu-concentration of copper. The diffusion activation energy of copper Cu in the ferrite + austenite region of carbon steel is between 90~108 kJ / mol at low temperatures, and in the ferrite region of carbon steel at high temperatures is between 126~167 kJ/mol. Furthermore, a Cu-Fe gradient material on the carbon steel gennerated via Cu-inward diffusion has better corrosion resistance rather than the bare carbon steel in NaCl solution.

Key words:  metallic materials      copper      Cu-Fe gradient material      diffusion coefficient      diffusion active energy      polarization curve     
Received:  21 May 2018     
ZTFLH:  TG146.1  
Fund: National Natural Science Foundation of China(51474088)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.338     OR     https://www.cjmr.org/EN/Y2019/V33/I3/225

Fig.1  Content distribution of Cu and Fe with the depth of samples after annealing diffusion treatment under different temperatures (a) 750℃, (b) 800℃, (c) 850℃, (d) 900℃, (e) 950℃, (f) 980℃, (g) 1000℃, (h) 1050℃
Fig.2  Microstructure of Cu-Fe diffusion couples after annealing diffusion treatment at 1050℃
Fig.3  SEM image and EDS line scanning of section of sample after annealing diffusion treatment at 1050℃
Fig.4  The diffusion coefficient of Cu in carbon steel at different weight concentration and temperatures
Fig.5  Fe-Cu alloy phase diagram
Fig.6  Relationship between diffusion coefficients of Cu and temperature during with different weight concentration of Cu and different temperature interval (a) 750~900℃, (b) 950~1050℃
CCu/%, mass fraction5101520253035404550
α-Fe +γ-Fe90.21107.83108.48115.17109.15101.9394.82102.58100.02107.50
γ-Fe167.79157.25128.38126.86135.77139.12141.74141.7472.9233.48
Table1  Diffusion activation energy of Cu in different microstructures with different weight concentration (kJ/mol)
Fig.7  Fe-C alloy phase diagram under experimental conditions
SamplesEcorr/mVIcorr/μA·cm-2
Carbon steel-60091.7
Cu plated carbon steel-36062.5
Cu-Fe gradient material-35961.7
Table 2  Fitting results of polarization curves for carbon steel and Cu plated carbon steel and Cu-Fe alloy in 3.5% NaCl solution
[1] YuQ C, WangZ Y, WangC. Corrosion behaviors of low alloy steel and carbon steel deposited with NaCl and NaHSO3 under dry/humid alternative condition [J]. Acta Metall. Sin., 2010, 46: 1133
[1] (于全成, 王振尧, 汪 川. 表面沉积NaCl 和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为 [J]. 金属学报, 2010, 46: 1133)
[2] WangS T, YangS W, GaoK W, et al. Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning [J]. Int. J. Miner. Metall. Mater., 2009, 16: 58
[3] MaY T, LiY, WangF H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci.,2009, 51: 99
[4] LiuR, ChenX P, WangX D, et al. Effect of alloy elements on corrosion resistance of weathering steels in marine atmosphere environment [J]. Hot Work. Technol., 2014, 43(20): 19
[4] (刘 芮, 陈小平, 王向东等. 合金元素对耐候钢在海洋大气环境下耐蚀性的影响 [J]. 热加工工艺, 2014, 43(20): 19)
[5] LiuL H, QiH B, LuY P, et al. A review on weathering steel research [J]. Corros. Sci. Prot. Technol., 2003, 15(2): 87
[5] (刘丽宏, 齐慧滨, 卢燕平等. 耐大气腐蚀钢的研究概况 [J]. 腐蚀科学与防护技术, 2003, 15(2): 87)
[6] MorcilloM, DiazI, ChicoB, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83(7): 6
[7] ChenX H, DongJ H, HanE H, et al. Effect of Cu-Mn on the corrosion performance of carbon steels in wet/dry environments [J]. Mater. Prot., 2007, 40(10): 19
[7] (陈新华, 董俊华, 韩恩厚等. 干湿交替环境下Cu、Mn合金化对低合金钢腐蚀行为的影响 [J]. 材料保护, 2007, 40(10): 19)
[8] YueL J, WangL M, HanJ S. Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel [J]. J. Rare Earths, 2010, 28(6): 952
[9] ChenG Z, GordoE, FrayD J. Direct electrolytic preparation of chromium powder [J]. Metall. Mater. Trans. B, 2004, 35B: 223
[10] QiY F, WangB, ZhouJ Y, et al. Structure and property of W-Ni-Cu functionally graded materials by composite electrodeposition [J]. Rare Metal. Mat. Eng., 2017, 46(12): 3893
[10] (齐艳飞, 王 波, 周景一等. 复合电沉积制备W-Ni-Cu梯度材料的组织及性能 [J]. 稀有金属材料与工程, 2017, 46(12): 3893)
[11] SprengelW, KoiwaM. The Decisive Contributions by L. Boltzmann and C. Matano to the Quantitative Analysis of Diffusion Phenomena [J]. Diff. Found., 2014, 1: 49
[12] SnablM, OndrejcekM. Surface diffusion of K on Pd 111: Coverage dependence of the diffusion coefficient determined [J]. J. Chem. Phys., 1998
[13] Den BroederF J A. BroederF J A D. A general simplification and improvement of the matano-boltzmann method in the determination of the interdiffusion coefficients in binary systems [J]. Scripta Metall., 1969, 3(5): 321
[14] FengL, LiJ S, CuiY W, et al. Research on interdiffusion behavior of Ti-Zr binary alloy in the β phase [J]. Rare Metal. Mat. Eng., 2011, 40(4): 610
[14] (冯 亮, 李金山, 崔予文等. Ti-Zr二元合金在β相区的互扩散行为研究 [J]. 稀有金属材料与工程, 2011, 40(4): 610)
[15] WeiH, LiuG, XiaoX, et al. Dynamic recrystallization behavior of a medium carbon vanadium micro alloyed steel [J]. Mater. Sci. Eng. A, 2013, 573: 215
[16] Martín-MartínR, Dorta-GuerraR, TorsneyB. Multiplicative algorithm for discriminating between Arrhenius and non-Arrhenius behaviour [J]. Chemom. and Intell. Lab. Syst., 2014, 139(15): 146
[17] ZhangC, YaoY, ChenS. Size-dependent surface energy density of typically fcc metallic nanomaterials [J]. Comput. Mater. Sci., 2014, 82(1): 372
[18] TanikerS, YilmazC. Phononic gaps induced by inertial amplification in BCC and FCC lattices [J]. Phys. Lett. A, 2013, 377(30): 1930
[19] ChenS Q, WangP, ZhangD. The influence of sulphate-reducing bacteria on heterogeneous electrochemical corrosion behavior of Q235 carbon steel in seawater [J]. Mater. Corros., 2016, 67(4): 340
[20] ShenD, LiG, GuoC, et al. Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation [J]. Appl. Surf. Sci., 2013, 287(24): 451
[21] NishimuraT, KatayamaH, NodaK, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56: 935
[22] DunnD S, BogartM B, BrossiaC S, et al. Corrosion of iron under alternating wet and dry conditions [J]. Corrosion, 2000, 56: 470
[23] ZhangJ, LiuF L, LiW H, et al. Effects of Srb on corrosion of Zn-Al-Cd anode in marine sediment [J]. Acta Metall. Sin., 2010, 46 (10): 1250
[23] (张 杰 , 刘奉令, 李伟华等. 海泥中硫酸盐还原菌对Zn-Al-Cd牺牲阳极腐蚀的影响 [J]. 金属学报, 2010, 46(10): 1250)
[24] GaoN, WangC, ZhangF H, et al. The Influence of major ions on the corrosion of penetrating zinc steel in oil field water [J]. J. Petro. Univ., 2011, 24(3): 31
[24] (高 楠, 王 婵, 张凤华等. 油田采出水中主要腐蚀离子对渗锌碳钢的腐蚀 [J].石油化工高等学校学报, 2011, 24(3): 31)
[25] MaT, YangG Y, DengM L, et al. Research status and prospect of copper-bearing steel [J]. Hot Work. Technol., 2017, 46(2):36.
[25] (马 涛, 杨桂宇, 邓美乐等. 含铜钢的研究现状及展望 [J]. 热加工工艺, 2017, 46(2): 36)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!