Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (1): 17-24    DOI: 10.11901/1005.3093.2017.243
ARTICLES Current Issue | Archive | Adv Search |
Effect of Cooling Rate and Al-content on Microstructure and Corrosion Resistance of Zn-Al Alloys Containing Trace Nd
Zujun CAO, Tianyu WENG, Gang KONG(), Chunshan CHE, Yanqi WANG
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
Cite this article: 

Zujun CAO, Tianyu WENG, Gang KONG, Chunshan CHE, Yanqi WANG. Effect of Cooling Rate and Al-content on Microstructure and Corrosion Resistance of Zn-Al Alloys Containing Trace Nd. Chinese Journal of Materials Research, 2018, 32(1): 17-24.

Download:  HTML  PDF(6866KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of cooling rate (0.03, 1.08 and 40°C/s) and Al-content on the solidified microstructure and corrosion resistance of Zn-xAl (x=4%, 5%, 7%)-0.06%Nd alloys used for hot-dip galvanizing were examined by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), polarization curves tests and neutral salt spray tests (NSS). The results show that the solidified microstructure of alloys is refined and the eutectic lamellar spacing became smaller as the cooling rate increases, and the corrosion resistance of the alloy increases initially and decreases afterwards with the increase of the cooling rate. Moreover, the addition of Nd can be beneficial to the further reduction of the eutectic lamellar spacing and the improvement of the corrosion resistance of the alloys. Therefore, after air cooling, the Zn-5%Al-0.06%Nd alloy presents the best corrosion resistance. Besides, the variation of Al-content between 4% and 7% caused mainly the change of microstructure, but little effect on the corrosion resistance of the alloys.

Key words:  metallic materials      corrosion resistance      polarization curve      microstructure      cooling rate      Zn-Al alloy     
Received:  10 April 2017     
ZTFLH:  TG146.1  
Fund: Supported by National Natural Science Foundation of China (Nos. 21573077 & 51373055), and International Lead and Zinc Study Group (No. ILZRO/IZA/CN201212)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.243     OR     https://www.cjmr.org/EN/Y2018/V32/I1/17

Fig.1  SEM micrographs of Zn-5% Al (a~c) and Zn-5%Al-0.06%Nd (d~f) alloys cooled to room temperature with three kinds of cooling methods (a, d) furnace cooling; (b, e) air cooling; (c, f) water cooling
Fig.2  (a, b) EDS analysis results of A, B points in Fig.1a, respectively
Fig.3  Relationships between lamellar spacing and cooling rate for two alloys
Fig.4  SEM micrographs of air cooled Zn-Al alloys with different Al contents (a) Zn-4%Al; (b) Zn-5%Al; (c) Zn-7%Al; (d) Zn-4%Al-0.06% Nd; (e) Zn-5%Al-0.06% Nd; (f) Zn-7%Al-0.06% Nd
Fig.5  Schematic illustration of the solidification of Zn-5%Al alloy (a) nucleation and growth; (b) bridging growth
Fig.6  Polarization curves of various alloys (a) without Nd and (b) containing Nd in 3.5% NaCl solution
Rare earth Sample Ecorr /V RP /Ωcm2 Icorr /μAcm-2
Without Nd Zn-5%Al (FC) -1.115 4588 3.078
Zn-5%Al (AC) -1.118 8587 2.046
Zn-5%Al (WC) -1.136 4663 2.636
Zn-4%Al (AC) -1.094 5397 2.333
Zn-7%Al (AC) -1.150 6228 2.297
0.06%Nd Zn-5%Al (FC) -1.143 9080 1.761
Zn-5%Al(AC) -1.113 13371 0.984
Zn-5%Al (WC) -1.148 9357 1.530
Zn-4%Al (AC) -1.098 6899 1.783
Zn-7%Al (AC) -1.154 9841 1.677
Table 1  Electrochemical polarization parameters corresponding to Fig.6
Fig.7  NSS results of Zn-5%Al and Zn-5%Al-0.06%Nd alloys with different cooling rates
Fig.8  NSS results of Zn-Al alloys with different Al contents
[1] Shibli S M A, Meena B N, Remya R. A review on recent approaches in the field of hot dip zinc galvanizing process[J]. Surf. Coat. Technol., 2015, 262: 210
[2] Wu X X, Kong G, Sun Z W, et al.Preparation and corrosion performance of lanthanum nitrate conversion coating on hot-dip Galfan steel[J]. Chin. J. Mater. Res., 2016(04): 269(吴晓晓, 孔纲, 孙子文等. 热浸镀Galfan表面镧盐转化膜的生长和耐腐蚀性能的研究[J]. 材料研究学报, 2016(04): 269)
[3] Sullivan J, Penney D, Elvins J, et al.The effect of ultrasonic irradiation on the microstructure and corrosion rate of a Zn-4.8wt.% Al galvanising alloy used in high performance construction coatings[J]. Surf. Coat. Technol., 2016, 306(4): 480
[4] Zelechower, Kli? J, Augustyn E, et al. The microstructure of annealed Galfan coating on steel substrate[J]. Archives of Metallurgy and Materials. 2012, 57(2): 517
[5] Feliu S, Barranco V.XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn-Al alloy coatings on steel[J]. Acta Mater., 2003, 51(18): 5413
[6] Zhang X, Leygraf C, Odnevall Wallinder I.Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments[J]. Corros. Sci., 2013, 73: 62
[7] Elvins J, Spittle J A, Worsley D A.Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion[J]. Corros. Sci., 2005, 47(11): 2740
[8] Penney D J, Sullivan J H, Worsley D A.Investigation into the effects of metallic coating thickness on the corrosion properties of Zn-Al alloy galvanising coatings[J]. Corros. Sci., 2007, 49(3): 1321
[9] Rosalbino F, Angelini E, Macciò D, et al.Influence of rare earths addition on the corrosion behaviour of Zn-5%Al (Galfan) alloy in neutral aerated sodium sulphate solution[J]. Electrochim. Acta, 2007, 52(24): 7107
[10] Rosalbino F, Angelini E, Macciò D, et al.Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn-5%Al (Galfan) alloy in neutral aerated sodium chloride solution[J]. Electrochim. Acta, 2009, 54(4): 1204
[11] Jare?o E D, Castro M J, Maldonado S I, et al.The effects of Cu and cooling rate on the fraction and distribution of epsilon phase in Zn-4Al-(3-5.6) Cu alloys[J]. J. Alloys Compd., 2010, 490(1-2): 524
[12] Mojaver R, Shahverdi H R.Relationship between cooling rate, microstructure features and wear behavior in end-chill cast Zn-27%Al alloys containing more than 2% Cu[J]. Wear., 2011, 271(11-12): 2899
[13] Yan S Q, Xie J P.Effect of cooling rate and Al contents on microstructure and hardness of Zn-based alloy[J]. Hot Working Technology, 2007(16): 10(闫淑卿, 谢敬佩. 冷却速度及铝含量对锌合金组织及硬度的影响[J]. 热加工工艺, 2007(16): 10)
[14] Tan J, Ju C, Gao H Y, et al.The effect of rare earth on corrosion resistance of hot-dip Galvanized coating[J]. J. Shanghai Jiaotong Univ., 2008(05): 757(谭娟, 鞠辰, 高海燕等. 稀土对热镀锌层耐蚀性的影响[J]. 上海交通大学学报, 2008(05): 757)
[15] Hu C J, Chu S J, Wang J, et al.Effects of lanthanum on corrosion resistance of hot-dip Galvanized coating[J]. Corrosion & Protection, 2011(07): 517(胡成杰, 储双杰, 王俊等. 稀土La对热镀锌层耐蚀性能的影响[J]. 腐蚀与防护, 2011(07): 517)
[16] Veys-Renaux D, Guessoum K, Rocca E, et al.New zinc-rare earth alloys: Influence of intermetallic compounds on the corrosion resistance[J]. Corros. Sci., 2013, 77: 342
[17] Jiang N, Chen L, Meng L, et al.Effect of neodymium, gadolinium addition on microstructure and mechanical properties of AZ80 magnesium alloy[J]. J. Rare Earths, 2016, 34(6): 632
[18] Su M, Zhang J, Feng Y, et al.Al-Nd intermetallic phase stability and its effects on mechanical properties and corrosion resistance of HPDC Mg-4Al-4Nd-0.2Mn alloy[J]. J. Alloys Compd., 2017, 691: 634
[19] Arrabal R, Mingo B, Pardo A, et al.Role of alloyed Nd in the microstructure and atmospheric corrosion of as-cast magnesium alloy AZ91[J]. Corros. Sci., 2015, 97: 38
[20] Hu Z, Ruan X, Yan H.Effects of neodymium addition on microstructure and mechanical properties of near-eutectic Al-12Si alloys[J]. T. Nonferr. Metal. Soc., 2015, 25(12): 3877
[21] Cao Z J, Kong G, Che C S.Effect of Nd addition on microstructure and corrosion resistance of Zn-5%Al alloy[J]. Chin. J. Nonferrous Met., 2017(01): 24(曹祖军, 孔纲, 车淳山. 稀土Nd对Zn-5%Al合金显微组织和耐蚀性的影响[J]. 中国有色金属学报, 2017(01): 24)
[22] Jackson K A, Hunt J D.Lamellar and rod eutectic growth[J]. AIME Met Soc Trans., 1966, 236: 1129
[23] Marder A R.The metallurgy of zinc-coated steel[J]. Prog. Mater. Sci., 2000, 45(3): 191
[24] Li H, Guo J, Huai K, et al.Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy[J]. J. Cryst. Growth, 2006, 290(1): 258
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!