|
|
Preparation and Property of a Hierarchical Porous Carbon Material |
Yuan JIAO1,2, Lili SUN1,2, Peng GUO1, Aiying WANG1( ) |
1 Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
Cite this article:
Yuan JIAO, Lili SUN, Peng GUO, Aiying WANG. Preparation and Property of a Hierarchical Porous Carbon Material. Chinese Journal of Materials Research, 2017, 31(12): 881-886.
|
Abstract Porous carbon materials were fabricated by a dual-templating method, using non-woven polyethylene terephthalate (PET) fabrics as the hard template and Pluronic F127 as the soft template, with soluble phenolic resol as the carbon precursor. There exists meso pores of 4~6 nm resulted from decomposition of F127 and macro pores of 10~15 μm resulted from decomposition of PET fabric in the prepared hierarchical porous materials. The conductivity can be reduced from 1.63×104 Ωm to 3.13×10-3 Ωm by properly adjusting the carbonization process parameter. This porous carbon sheet can be directly used as an electrode for Li-ion battery without any conductive additive or binder, and has very stable capacity.
|
Received: 24 January 2017
|
|
Fund: Supported by National Natural Science Foundation of China (No. 51522106), Key Research and Development Program of Zhejiang Province (No. 2017C01001) |
[1] | Ji X, Nazar LF.Advances in Li-S batteries[J]. J. Mater. Chem., 2010, 20(44): 9821 | [2] | Xu G, Ding B, Shen L, et al.Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery[J]. J. Mater. Chem. A., 2013, 1(14): 4490 | [3] | Jayaprakash N, Shen J, Moganty SS, et al.Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angew. Chem., Int. Ed. Engl., 2011, 50(26): 5904 | [4] | Wenzel S, Hara T, Janek J, et al.Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environ. Sci., 2011, 4(9): 3342 | [5] | Xu Y, Zhu Y, Liu Y, et al.Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries[J]. Adv. Energy Mater., 2013, 3(1): 128 | [6] | Magasinski A, Dixon P, Hertzberg B, et al.High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nat. Mater., 2010, 9(4): 353 | [7] | Chai G S, Shin I S, Yu J S.Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells[J]. Adv. Mater., 2004, 16(22): 2057 | [8] | Deng Y, Liu C, Yu T, et al.Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach[J]. Chem. Mater., 2007, 19(13): 3271 | [9] | Su F, Lv L, Zhao X.Synthesis of nanostructured porous carbon[J]. Int. J. Nanosci., 2005, 4(02): 261 | [10] | Huang Y, Cai H, Feng D, et al.One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities[J]. Chem. Commun., 2008(23): 2641 | [11] | Xue C, Tu B, Zhao D.Evaporation-induced coating and self-assembly of ordered mesoporous carbon-silica composite monoliths with macroporous architecture on polyurethane foams[J]. Adv. Funct. Mater., 2008, 18(24): 3914 | [12] | Meng Y, Gu D, Zhang F, et al.A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly[J]. Chem. Mater., 2006, 18(18): 4447 | [13] | Shimizu T.Self-assembled Nanomaterials II: Nanotubes[M]. Berlin: Springer Berlin Heidelberg, 2008 | [14] | Werner J G, Johnson S S, Vijay V, et al.Carbon-sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium-sulfur batteries[J]. Chem. Mater., 2015, 27(9): 3349 | [15] | Matsumura Y, Wang S, Mondori J.Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries[J]. J. Electrochem. Soc., 1995, 142(9): 2914 | [16] | Nan D.One dimensional porous carbon and Si/C anode materials for lithium ion batteries[D]. Beijing: Tsinghua University, 2014(楠顶. 锂离子电池自支撑一维多孔碳与硅碳复合负极材料研究[D]. 北京: 清华大学, 2014) | [17] | Xing W, Dahn J R.Study of irreversible capacities for Li insertion in hard and graphitic carbons[J]. J. Electrochem. Soc., 1997, 144(4): 1195 | [18] | Tarascon J M, Armand M.Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359 | [19] | Chung S Y, Bloking J T, Chiang Y M.Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nat. Mater., 2002, 1(2): 123 | [20] | Kinney C R.Studies on producing graphitizable carbons[A]. Proceedings of first and Second Conferences on Carbon[C]. New York, 1995 | [21] | Marchand A.,J. V. Zanchetta. Proprietes electroniques d'un carbone dope a l'azote[J]. Carbon, 1966, 3(4): 483 | [22] | Kim, Jung Dam, Jae-Seung Roh, Myung-Soo Kim. Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber[J]. carbon lett., 2017, 21: 51 | [23] | Kwon, Jin Heon, et al.Effect of carbonization temperature on electrical resistivity and physical properties of wood and wood-based composites[J]. Composites Part B, 2013, 46: 102 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|