Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (10): 758-764    DOI: 10.11901/1005.3093.2016.444
ARTICLES Current Issue | Archive | Adv Search |
Influence of Synergistic Effect of Carbon Nanotubes/Carbon Black on Properties of Natural Rubber/Butadiene Rubber Composites
Jiangshan GAO, Yan HE(), Jin XU, Chang GUO
Qingdao University of Science and Technology, Qingdao 266061, China
Cite this article: 

Jiangshan GAO, Yan HE, Jin XU, Chang GUO. Influence of Synergistic Effect of Carbon Nanotubes/Carbon Black on Properties of Natural Rubber/Butadiene Rubber Composites. Chinese Journal of Materials Research, 2017, 31(10): 758-764.

Download:  HTML  PDF(1051KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon nanotubes (CNTs) and carbon black (CB) were used as the hybrid reinforcing fillers, the coordinated effect of different fillers on the properties of composites was investigated. The filling content of CNTs increases as the decrease of CB content, and the mass ratio of CNTs increase to CB decrease is fixed to m (CNTs):m(decreasing amount of CB)=1:2.5.The dispersion of CNTs at the brittle fracture surface was gottenby the scanning electron microscopy (SEM). The flatness and height difference of the tensile fracture-surface were observed by 3D measuring laser microscope. The tensile strength was the best when 4 phr CNTs was filled, that was 11.41% higher than that of composites with 0 phr CNTs. The processability was worse and the modulus was enhanced, abrasion property increased with the increase of CNTs and composites with 8 phr CNTs was 21.14% more wearable than 0 phr CNTs. According to the loss factor of dynamic mechanical analysis (DMA), rolling resistance of composites was reductive but wet-skid resistance decreased with the increase of CNTs.

Key words:  composite      synergistic effect      carbon nanotubes      carbon black      mechanical properties      DIN abrasion      DMA     
Received:  27 July 2016     
ZTFLH:  TB332  
Fund: Supported by National Natural Science Foundation of China (Nos.51276091 & 51676103) and Independent Innovation and Achievement Transformation Projects of Shandong (No.2014ZZCX01503)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.444     OR     https://www.cjmr.org/EN/Y2017/V31/I10/758

Materials Dosage/phr
Natural rubber (NR) 80
Butadiene rubber (BR) 20
Silica 15
Si69 1.2
ZnO 4
Stearic acid 2
Antioxidant4020 2
AcceleratorNS 1.5
Sulfur 1.2
CNTs Variable X
Carbon black (CB) Variable Y (Y=(40-2.5X))
Table 1  Experimental formula
No. 1# 2# 3# 4# 5# 6# 7# 8# 9#
CNTs/phr 0 1 2 3 4 5 6 7 8
Carbon black/phr 40 37.5 35 32.5 30 27.5 25 22.5 20
Table 2  Mass of CNTs and carbon black
Fig.1  SEM surface appearance images of different ratio of composites (a) 1#,(b) 3#,(c) 6#,(d) 9#
Fig.2  3D measuring laser microscope images of the tensile fracture-surface of composites (a) 1#,(b) 3#,(c) 6#,(d) 9#
Fig.3  3D measuring laser microscope images of the tensile fracture-surface of composites (The left is colorized image and the right is altitude intercept 3D image of each group) (a) 1#,(b) 3#,(c) 6#,(d) 9#
Fig.4  Tensile strength and modulus of different ratio of composites
Fig.5  Processability of the composites
Fig.6  Modulus and DIN abrasion of the composites
Fig.7  Loss factor of different ratio of composites
No. 1# 3# 6# 9#
Tg/℃ -42.75 -41.57 -42.74 -42.42
Peak of Tg 0.885 0.840 0.843 0.858
Table 3  Peak of loss factor's curve
Fig.8  Loss factor of composites at 0℃and 60℃
[1] S. Iijima.Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(7): 56
[2] Sandler JKW, Kirk JE, Shaffer MSP, et al.Ultra-lowelectrical percolation threshold in carbon-nanotube-epoxycomposites[J]. Polymer, 2003, 44(19): 5893
[3] T. W. Ebbesen, H. J. Lezec, H. Hiura, et al.Electrical conductivity of individualcarbonnanotubes[J]. Nature, 1996, 382(6586):54
[4] A.M. Shanmugharaj, J.H. Bae, K.Y. Lee,et al.Physical and chemical characteristics of multiwalled carbon nanotubesfunctionalized with aminosilane and its influence on theproperties of natural rubber composites[J].Compos. Sci. Technol., 2007, 67(9): 1813
[5] P. Kueseng, P. Sea-oui, N. Rattanasom, et al. Mechanical and electricalproperties of natural rubber and nitrile rubber blends filled withmulti-wall carbon nanotube: effect of preparation methods[J].PolymTest, 2013, 32(4): 731
[6] Lu L, Zhai.Y H, Zhang Y, et al. Reinforcementof hydrogenated carboxylated nitrile-butadiene rubber by multi-walledcarbon nanotubes[J].Appl. Surf. Sci., 2008, 255(5): 2162
[7] A. Sharma, B. Tripathi, Y. K. Vijay, Dramatic improvement in propertiesof magnetically aligned MWCNT/polymer nanocomposites[J]. J. Membrane. Sci., 2010, 361(1): 89
[8] E. T. Thostenson, T. W. Chou, Aligned multi-walled carbon nanotube-reinforcedcomposites: processing and mechanical characterization[J].JPhys.D. Appl.Phys.,2002, 35(16): 77
[9] P. Kueseng, P. Sae-oui, C. Sirisinha, et al. Anisotropic studies of multi-wall carbon nanotube (MWCNT)-filled natural rubber (NR) and nitrile rubber (NBR) blends[J]. Polym. Test., 2013, (32): 1229
[10] He Y, Cao Z F, MaL X, Shear flow induced alignment of carbon nanotubes in natural rubber[J]. Int. J.Polym. Sci., 2015
[11] He Y, Feng J J, Ma L X, Effect of align-carbon nanotubes on the properties of nature rubber composite materials[J]. Chinese J. Mater. Res., 2013, 27(5): 495(何燕, 冯娟娟, 马连湘. 定向碳纳米管对天然橡胶复合材料性能的影响[J]. 材料研究学报, 2013, 27(5): 495)
[12] Yang S Y, Lin W N, Huang Y L.Synergetic effects of graphemeplatelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites[J]. Carbon,2011, 49(3): 793
[13] Fan Z J, Wang Y, Luo G H, et al.The synergetic effect of carbon nano-tubes and carbon black in a rubber system[J]. New Carbon Mater., 2008, 23(2): 149(范壮军, 王垚, 罗国华等. 碳纳米管和炭黑在橡胶体系增强的协同效应[J]. 新型炭材料, 2008, 23(2): 149)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[8] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[10] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[11] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[13] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[14] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[15] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
No Suggested Reading articles found!