Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (12): 888-896    DOI: 10.11901/1005.3093.2016.410
Orginal Article Current Issue | Archive | Adv Search |
Microstructural Evolution and Flow Behavior of 2205 and 2507 Duplex Stainless Steel during Double Pass Hot Compressive Deformation
Lixin WANG1,Huabing LI2,Guoping LI1,Zhengyou TANG3,*(),Ming MA3
1. Shanxi Taigang Stainless Steel Co Ltd, Taiyuan 030003, China
2. School of Metallurgy, Northeastern University, Shenyang 110819, China
3. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

Lixin WANG,Huabing LI,Guoping LI,Zhengyou TANG,Ming MA. Microstructural Evolution and Flow Behavior of 2205 and 2507 Duplex Stainless Steel during Double Pass Hot Compressive Deformation. Chinese Journal of Materials Research, 2016, 30(12): 888-896.

Download:  HTML  PDF(10607KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Double passes hot compression tests of DSS2205 and SDSS2507 were conducted in order to investigate the microstructural evolution in the interval of hot deformation and its corresponding effect on the subsequent flow behavior of duplex stainless steels. The results indicated that, the higher deformation temperature(1200℃) decreased the stability of the austenite. As the holding time increased, the growth of ferritic recrystallized grains could be observed and the occurrence of γδ decreased the phase proportion of the austenite, which caused that the flow stress of DSSs in the second pass of hot compression decreased. In a lower temperature(1000℃), δγ became dominant and a large number of granular austenite formed in the grain boundary of the ferrite when the holding time increased and the growth of ferritic recrystallized grains was inhibited. During the second pass of compression, dislocations in the ferrite tangled around the phase boundaries between two phases due to the formation of granular austenite. Compared with the microstructural evolutions of DSS2205 and SDSS2507 at lower temperature, it was known that the increase of deformation resistance in the second pass deformation of DSSs was mainly related to the formation of the granular austenite.

Key words:  metallic materials      duplex stainless steel      thermal deformation      double passes hot compression      flow stress      static softening     
Received:  19 July 2016     
Fund: *Supported by National Key Technology Support Program No. 2012BAE04B01 High Technology Research and Development Program of China No. 2015AA034301 Fundamental Research Funds for the Central Universities Nos. N150204007&L1502034 National Natural Science Foundation of China No. 51574077.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.410     OR     https://www.cjmr.org/EN/Y2016/V30/I12/888

Steel Cr Mo Ni N Mn C Si Fe
DSS2205 23.61 3.36 5.12 0.19 1.67 0.019 0.37 Bal.
SDSS2507 25.21 4.23 7.08 0.26 1.08 0.03 0.02 Bal.
Table 1  Chemical compositions of tested steel (mass fraction, %)
Fig.1  Microstructures of DSS2205 and SDSS2507 alloys with different holding time after the first pass of compression: (a) DSS2205, 1200℃/0 s; (b) DSS2205, 1200℃/100 s; (c) DSS2205, 1100℃/0 s; (d) DSS2205, 1100℃/100 s; (e) DSS2205, 1000℃/0 s; (f) DSS2205, 1000℃/100 s; (g) SDSS2507, 1200℃/100 s; (h) SDSS2507, 1100℃/100 s; (i) SDSS2507, 1000℃/100 s
Fig.2  Volume fractions of austenite phase of DSS2205 and SDSS2507 alloys with different holding times and temperatures
Fig.3  Equilibrium phase diagram of DSS2205 (a) and SDSS2507 (b) alloys calculated by J-MAT Pro
Fig.4  Structures and morphologies of DSS2205 (a) and SDSS2507 (b) alloys with the holding time of 100 s at 1000℃
Fig.5  OM images of ferrite in DSS2205 and SDSS2507 alloys before and after holding 100 s (a) DSS2205, 1200℃/0 s; (b) DSS2205, 1200/℃/100 s; (c) DSS2205, 1000℃/0 s; (d) DSS2205, 1000/℃/100 s; (e) SDSS2507, 1200℃/100 s; (f) SDSS2507, 1000℃/100 s
Fig.6  TEM images of DSS2205 after holding for 100 s at 1200℃ (a) and 1000℃ (b)
Fig.7  Flow curves of DSS2205 and SDSS2507 under double-pass hot compression: (a) DSS2205, 1200℃; (b) SDSS2507, 1200℃; (c) DSS2205, 1100℃; (d) SDSS2507, 1100℃; (e) DSS2205, 1000℃; (f) SDSS2507, 1000℃
Fig.8  Static softening rate of DSS2205 and SDSS2507 with varying temperatures and holding time
Fig.9  Deformation resistance rate of DSS2205 and SDSS2507 between two passes with varying temperatures and holding times
Fig.10  Microstructure of DSS2205 after second pass hot deformation under the conditions of 1000℃/100 s
1 XIONG Yunlong, LOU Yangchun, LIU Xinfeng, New progress of stainless steel, Hot Working Technology, (5), 51(2005)
1 (熊云龙, 娄延春, 刘新峰, 不锈钢材料研究的新进展, 热加工工艺, (5), 51(2005))
2 Li Ma, Shengsun Hu, Junqi Shen, Jian Han, Zhixiong Zhu, Effects of Cr content on the microstructure and properties of 26Cr-3.5Mo-2Ni and 29Cr-3.5Mo-2Ni super ferritic stainless steels, Journal of Materials Science & Technology, 32(6), 552(2016)
3 J. O. Nilsson, Super duplex stainless steel, Materials Science and Technology, 8(8), 685(1992)
4 Yueling Guo, En-Hou Han, Jianqiu Wang, Effects of forging and heat treatments on the microstructure and oxidation behavior of 316LN stainless steelin high temperature water, Journal of Materials Science & Technology, 31(4), 403(2015)
5 Y. H. Zhou, Y. M. Li, Y. C. Liu, Q. Y. Guo, C. X. Liu, L. M. Yu, C. Li, H. J. Li, Precipitation behavior of type 347H heat-resistant austenitic steel during long-term high-temperature aging, Journal of Materials Research, 30(23), 3642(2015)
6 H. C. Wu, B. Yang, Y. Z. Shi, Q. Gao, Y. Q. Wang, Crack initiation mechanism of Z3CN20.09M duplex stainless steel during corrosion fatigue in water and air at 290℃, Journal of Materials Science & Technology, 31(11), 1144(2015)
7 M. Pohl, O. Storz, T. Glogowski.Effect of intermetallic precipitations on the properties of duplex stainless steel, Materials Characterization, 58(1), 65(2007)
8 Xiaosheng Zhou, Chenxi Liu, Liming Yu, Yongchang Liu, Huijun Li, Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steelsfor power and nuclear plants: a review, Journal of Materials Science & Technology, 31(3), 235(2015)
9 GAO Wa, LUO Jianmin, YANG Jianjun, Research progress and application of double phase stainless steel, Ordnance Material Science and Engineering, 28(3), 61(2005)
9 (高娃, 罗建民, 杨建君, 双相不锈钢的研究进展及其应用, 兵器材料科学与工程, 28(3), 61(2005))
10 A. Momeni, K. Dehghani, M. C. Poletti, Law of mixture used to model the ?ow behavior of a duplex stainless steel at high temperatures, Materials Chemistry and Physics, 139, 747(2013)
11 O. Balancin, W. A. M.Hoffmann, J. J. Jonas, Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures, Metallurgical and Materials Transactions A, 31(5), 1353(2000)
12 H. Farnoush, A. Momeni, K. Dehghani, J. A. Mohandesi, Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases, Materials & Design, 31(1), 220(2010)
13 A. Pinol-Jue, A.Iza-Mendia, I.Gutierrez, δ/γ interface boundary sliding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel, Metallurgical and Materials Transactions A, 31(6), 1671(2000)
14 Y. H. Zhou, Y. C. Liu, X. S. Zhou, C. X. Liu, L. M. Yu, C. Li, B. Q. Ning, Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel, Journal of Materials Research, 30(13), 2090(2015)
15 J. M. Cabrera, A. Mateo, L. Llanes, J. M. Prado, M. Anglada, Hot deformation of duplex stainless steels, Journal of Materials Processing Technology, 143(36), 321(2003)
16 E. Evangelista, H. J. Mcqueen, M. Niewczas, M. Cabibbo, Hot workability of 2304 and 2205 duplex stainless steels, Canadian Metallurgical Quarterly, 43(3), 339(2003)
17 MA Ming, DING Hua, TANG Zhengyou, ZHAO Jingwei, JIANG Zhouhua, FAN Guangwei, Effects of temperature and strain rate on flow behavior and microstructural evolution of a super duplex stainless steel under hot deformation, Journal of Iron and Steel Research International, 23(3), 244(2016)
18 D. N. Zou, K. Wu, Y. Han, W. Zhang, B. Cheng, G. J. Qiao, Deformation characteristic and prediction of flow stress for as-cast 21Cr economical duplex stainless steel under hot compression, Materials & Design, 51, 975(2013)
19 L. Chen, X. Ma, X. Liu, L. Wang, Processing map for hot working characteristics of a wrought 2205 duplex stainless steel, Materials & Design, 32(3), 1292(2011)
20 CHEN Yulai, ZHANG Tairan, WANG Yide, LI Jingyuan, Effect of O, N and Ni content on the hot rolling plasticity of 0Cr25Ni7Mo4N duplex stainless steel, Acta Metallurgica Sinica, 50(8), 905(2014)
20 (陈雨来, 张泰然, 王一德, 李静媛, O, N和Ni含量对0Cr25Ni7Mo4N 双相不锈钢热轧塑性的影响, 金属学报, 50(8), 905(2014))
21 M. Jin, L. U. Bo, X. G. Liu, H. Guo, Static recrystallization behavior of 316LN austenitic stainless steel, Iron and Steel Research International, 20(11), 67(2013)
22 YANG Lianhong, LI Longjiao, LIU Yazheng, ZHOU Leyu, Thermal deformation behavior of 430 ferrite stainless steel, Heat Treatment of Metals, 35(12), 78(2011)
22 (杨连宏, 李龙蛟, 刘雅政, 周乐育, 430铁素体不锈钢的热变形行为, 金属热处理, 36(12), 78(2011))
23 Y. Han, H. Wu, W. Zhang, D. Zou, Constitutive equation and dynamic rescrystallization behavior of as-cast 254SMO super-austenitic stainless steel, Materials & Design, 69, 230(2015)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!