Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (12): 897-903    DOI: 10.11901/1005.3093.2016.252
Orginal Article Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of 2205 DSS Metal Inert-gas Welding Joints
Guoping LI1,Jianjun WANG2,3,*(),Tianhai WU2,Yanhui WEN2,Huabing LI4,Chunming LIU2,3
1. Shanxi Taigang Stainless Steel Co. Ltd, Taiyuan 030003, China
2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3. Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819, China
4. School of Metallurgy, Northeastern University, Shenyang 110819, China
Cite this article: 

Guoping LI,Jianjun WANG,Tianhai WU,Yanhui WEN,Huabing LI,Chunming LIU. Microstructure and Mechanical Properties of 2205 DSS Metal Inert-gas Welding Joints. Chinese Journal of Materials Research, 2016, 30(12): 897-903.

Download:  HTML  PDF(5536KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

2205 DSS plates were welded with four different heat inputs using TIG welding. The microstructures of welding joints were carefully observed by means of OM, SEM, and TEM. The tensile properties and microhardness of welding joints were tested and analyzed in detail. The results show that with the increasing of heat input, the width of strip austenite in incomplete recrystallization zone increases and the grain size of ferrite and the volume fraction of austenite in coarse grain zone increase gradually, while Widmanstatten austenite decreases and blocky austenite increases in weld metal. Widmanstatten austenite is unstable at high temperature and divided into blocks with the formation of fine strip ferrite at the phase boundary. The tensile strength and yield strength decrease while the elongation increases with the increasing of heat input. According to the results of microhardness, the maximum of microhardness appears in the HAZ where ferrite volume fraction is the highest. The microhardness in weld metal is higher than that in base metal due to the relatively higher amounts of alloy elements.

Key words:  metallic materials      2205 duplex stainless steel      TIG welding      heat input      Widmanstatten austenite      mechanical property     
Received:  11 May 2016     
Fund: *Supported by National Key Technology Support Program No. 2012BAE04B01 Fundamental Research Funds for the Central Universities No. N140206001 & L1502045 ron and Steel Generic Technology and Collaborative Innovation Funding Project of 2011 Program.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.252     OR     https://www.cjmr.org/EN/Y2016/V30/I12/897

Material C N Mn Cr Ni Mo Si S P Fe
2205 DSS 0.019 0.162 1.175 22.54 5.531 3.142 0.496 0.001 0.022 Bal.
ER 2209 0.021 0.150 1.460 23.26 7.610 2.820 0.420 0.002 0.022 Bal.
Table 1  Compositions of 2205 DSS and ER 2209 (mass fraction, %)
Current/A Voltage/V Welding speed /mms-1 Heat input / kJmm-1 Shielding gas flow / Lmin-1
260 36 5.2 1.8 15
3.6 2.6
2.8 3.4
2.2 4.2
Table 2  Welding parameters of TIG
Fig.1  Microstructures of HAZ under different heat inputs: (a, b) Q1 =1.8 kJ/mm; (c, d) Q2 =2.6 kJ/mm; (e, f) Q3 = 3.4 kJ/mm; (g, h) Q4 = 4.2 kJ/mm
Fig.2  Microstructures of weld metal under different heat inputs: (a) Q1 = 1.8 kJ/mm; (b) Q2 = 2.6 kJ/mm; (c) Q3 = 3.4 kJ/mm; (d) Q4 = 4.2 kJ/mm
Fig.3  TEM image of weld metal under the heat input of 3.4 kJ/mm
Fig.4  Crystallographic orientation of grains obtained from EBSD measurements: (a) weld metal under heat input of 2.6 kJ/mm; (b) weld metal under heat input of 3.4 kJ/mm
Fig.5  Tensile properties of welding joints under different heat inputs
Fig.6  Microhardness in different areas of the welding joints under different heat inputs
1 WU Jiu, Duplex stainless steel, (Beijing, Metallurgical Industry Press, 1999) p.1
1 (吴玖, 双相不锈钢, (北京, 冶金工业出版社, 1999) p.1)
2 M. J. Alberto, S. R. Gedeon, B. Oscar, Influence of the microstructure on the plastic behavior of duplex stainless steels, Mater. Sci. Eng. A, 528(6), 2259(2011)
3 S. X. Li, X. P. Ren, X. Ji, Y. Y. Gui, Effects of microstructure changes on the super plasticity of 2205 duplex stainless steel, Mater. Design, 55, 146(2014)
4 Z. Y. Zhang, Z. Y. Wang, Y. M. Jiang, H. Tan, D. Han, Y. J. Guo, Effect of post-weld heat treatment on microstructure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds, Corros. Sci., 62, 42(2012)
5 S. J. Kim, J. K. Kim, S. P. Park, A study on the applicability of Si in low-Mo duplex stainless steel weld metals to improve the corrosion resistance, Scripta Mater., 96, 33(2015)
6 J. Olsson, M. Snis, Duplex-A new generation of stainless steels for desalination plants, Desalination, 205(2), 104(2007)
7 K. H. Lo, C. T. Kwok, W. K. Chan, D. Zeng, Corrosion resistance of duplex stainless steel subjected to long-term annealing in the spinodal decomposition temperature range, Corros. Sci., 55, 267(2012)
8 D. H. Kang, H. W. Lee, Effect of different chromium additions on the microstructure and mechanical properties of multipass weld joint of duplex stainless steel, Metall. Mater. Trans. A, 43(12), 4678(2012)
9 ZHANG Yan, QIAN Bainian, WANG Zongjie, LI Lijing, GUO Xuming, SUN Wenzhe, Effect of HAZ microstructure on toughness of 0025Ni7Mo3N duplex stainless steel, Chin. J. Mater. Res., 15(2), 219(2001)
9 (张艳, 钱百年, 王宗杰, 李晶丽, 国旭明, 孙文哲, 00Cr25Ni7M03N双相不锈钢HAZ组织对韧性的影响, 材料研究学报, 15(2), 219(2001))
10 J. Luo, Y. L. Dong, L. F. Li, X. M. Wang, Microstructure of 2205 duplex stainless steel joint in submerged arc welding by post weld heat treatment, J. Manuf. Process., 16(1), 144(2014)
11 Y. Ohmori, K. Nakai, H. Ohtsubo, Y. Isshiki, Mechanism of Widmanstatten austenite formation in a δ/γ duplex phase stainless steel, ISIJ Int., 35(8), 959(1995)
12 K. Ameyama, G. C. Weatherly, K. T. Aust, A study of grain boundary nucleated Widmanstatten precipitates in a two-phase stainless steel, Acta Metall. et Mater., 40(8), 1835(1992)
13 C. H. Shek, C. Dong, J. K. L.Lai, K. W. Wong, Early-stage widmanstatten growth of the γ phase in a duplex steel, Metall. Mater. Trans. A, 31(1), 15(2000)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!