Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (1): 15-22    DOI: 10.11901/1005.3093.2015.191
Orginal Article Current Issue | Archive | Adv Search |
Processes of Deformation-induced Martensite Trans-formation and Microstructure Refinement of 316L Stainless Steel during Surface Mechanical Rolling Treatment
XU Jiuling1,2, HUANG Haiwei2, ZHAO Mingchun1, WANG Zhenbo2,**(), LU Ke2,3
1. School of Material Science and Engineering, Central South University, Changsha 410083, China
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
Cite this article: 

XU Jiuling, HUANG Haiwei, ZHAO Mingchun, WANG Zhenbo, LU Ke. Processes of Deformation-induced Martensite Trans-formation and Microstructure Refinement of 316L Stainless Steel during Surface Mechanical Rolling Treatment. Chinese Journal of Materials Research, 2016, 30(1): 15-22.

Download:  HTML  PDF(4996KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A gradient and nanostructured (GNS) surface layer was formed on a 316L stainless steel sample by using surface mechanical rolling treatment (SMRT). The effect of SMRT on the evolution of phase composition and microstructure was studied of the GNS surface layer. The results show that deformation-induced martensite transformation occurs in the surface layer after SMRT, and the martensite amount increases with the increasing penetration depth of SMRT. The microstructural refinement mechanism includes subsequently the formation and interaction of various dislocations, deformation twinning, deformation-induced martensite transformation, and martensite refinement. Finally, nanostructure with mostly martensite and a mean grain size of ca. 55 nm was achieved in the topmost surface layer of the 316L sample.

Key words:  metallic materials      nanostructured material      surface mechanical rolling treatment      gradient nanostructure      316L stainless steel      deformation-induced martensitic transformation     
Received:  08 April 2015     
Fund: *Supported by National Basic Research Program of China No. 2012CB932201, Key Research Program of Chinese Academy of Sciences No. KGZD-EW-T06, and Shenyang National Laboratory for Materials Science No. 2015RP04.
About author:  **To whom correspondence should be addressed, Tel: (024)83971890, E-mail: zbwang@imr.ac.cn.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.191     OR     https://www.cjmr.org/EN/Y2016/V30/I1/15

Fig.1  Cross-sectional SEM morphologies of 316L samples after SMRT for 1 (a) and 6 (b) passes
Fig.2  Variations of microhardness along depth from the treated surface in the SMRT samples after 1 and 6 penetration passes
Fig.3  XRD patterns of 316L surface layers after SMRT with different passes
Fig.4  Variation of α-martensite content in the SMRT surface layer with penetration pass
Fig.5  TEM images of dislocation structures at the depth of ~500 μm (a), and deformation twins and corresponding selected area electron diffraction (SAED) pattern at the depth of 200-300 μm (b)
Fig.6  Bright-field TEM image (a) and corresponding SAED pattern and its indexed pattern of α-martensite and austenite phases at ~200 μm in depth (b), (c) and (d) are dark-field TEM images of martensite and austenite phases in (a), respectively, taken from corresponding diffractions in (b)
Fig.7  Typical bright-field (a) and dark-field (b) TEM images at ~10 μm in depth from the treated surface of the SMRT-6P sample, Insert in (b) shows corresponding SAED pattern
Fig.8  Typical bright-filed (a) and dark-field (b) TEM images at the topmost surface layer of the SMRT-6P sample, (c) shows corresponding SAED pattern
Fig.9  Schematic illustrations of the microstructure evolution in the SMRT surface layer
1 K. Lu, Making strong nanomaterials ductile with gradients, Science, 345(6203), 1455(2014)
2 X. H. Chen, J. Lu, L. Lu, K. Lu, Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scripta Materialia, 52(10), 1039(2005)
3 T. Roland, D. Retraint, K. Lu, J. Lu, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment, Scripta Materialia, 54(11), 1949(2006)
4 H. T. Wang, N. R. Tao, K. Lu, Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel, Scripta Materialia, 68(1), 22(2013)
5 H. W. Huang, Z. B. Wang, X. P. Yong, K. Lu, Enhancing torsion fatigue behaviour of a martensitic stainless steel by generating gradient nanograined layer via surface mechanical grinding treatment, Materials Science and Technology, 29(10), 1200(2013)
6 F. Lecroisey. A.Pineau, Martensitic Transformations Induced by Plastic-Deformation In Fe-Ni-Cr-C System, Metallurgical Transactions, 3(2), 387(1972)
7 H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, K. Lu, Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment, Acta Materialia, 51(7), 1871(2003)
8 C. X. Huang, G. Yang, Y. L. Gao, S. D. Wu, S. X. Li, Investigation on the nucleation mechanism of deformation-induced martensite in an austenitic stainless steel under severe plastic deformation, Journal of Materials Research, 22(3), 724(2007)
9 A. Y. Chen, H. H. Ruan, J. Wang, H. L. Chan, Q. Wang, Q. Li, J. Lu, The influence of strain rate on the microstructure transition of 304 stainless steel, Acta Materialia, 59(9), 3697(2011)
10 G. B. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metallurgical Transactions, A6(4), 791(1975)
11 F. K. Yan, G. Z. Liu, N. R. Tao, K. Lu, Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles, Acta Materialia, 60(3), 1059(2012)
12 C. Ye, A. Telang, A. S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J. M. K.Wiezorek, Z. Zhou, D. Qian, S. R. Mannava, V. K. Vasudevan, Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility, Materials Science and EngineeringA-Structural Materials Properties Microstructure and Processing, 613, 274(2014)
13 H. W. Huang, Z. B. Wang, J. Lu, K. Lu, Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer, Acta Materialia, 87, 150(2015)
14 M. Eskandari, A. Najafizadeh, A. Kermanpur, Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing, Materials Science and Engineering: A, 519, 46(2009)
15 K. Spencer, M. Veron, K. Yu-Zhang, J. D. Embury, The strain induced martensite transformation in austenitic stainless steels Part 1-Influence of temperature and strain history, Materials Science and Technology, 25(1), 7(2009)
16 G. Liu, J. Lu, K. Lu, Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 286(1), 91(2000)
17 C. Herrera, R. L. Plaut, A. F. Padilha, Microstructural refinement during annealing of plastically deformed austenitic stainless steels, Fundamentals of Deformation and Annealing, 550, 423(2007)
18 S. S. Hecker, M. G. Stout, K. P. Staudhammer, J. L. Smith, Effects of strain state and strain rate on deformation-induced transformation in 304 stainless-steel .1. magnetic measurements and mechanical-behavior, Metallurgical Transactions A-Physical Metallurgy and Materials Science, 13(4), 619(1982)
19 J. R. Patel, M. Cohen, Criterion for the action of applied stress in the martensitic transformation, Acta Metallurgica, 1(5), 531(1953)
20 H. C. Shin, T. K. Ha, W. J. Park, Y. W. Chang, Deformation-induced martensitic transformation under various deformation modes, Engineering Plasticity from Macroscale to Nanoscale Pts 1 and 2, 233(2), 667(2003)
21 V. Shrinivas, S. K.VarmaL. E. Murr, Deformation-induced martensitic characteristics in 304-sainless and 316-stainless steels during room-temperature rolling, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 26(3), 661(1995)
22 J. W. Christian, S. Mahajan, Deformation twinning, Progress in Materials Science, 39(1-2), 1(1995)
23 M. A. Meyers, O. Vohringer, V. A. Lubarda, The onset of twinning in metals: A constitutive description, Acta Materialia, 49(19), 4025(2001)
24 C. X. Huang, G. Yang, B. Deng, S. D. Wu, S. X. Li, Z. F. Zhang, Formation mechanism of nanostructures in austenitic stainless steel during equal channel angular pressing, Philosophical Magazine, 87(31), 4949(2007)
25 T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, M. Ichihara, Experimental-study of martensite nucleation and growth in 18-8 stainless-steel, Acta Metallurgica, 25(10), 1151(1977)
26 N. R. Tao, K. Lu, Nanoscale structural refinement via deformation twinning in face-centered cubic metals, Scripta Materialia, 60(12), 1039(2009)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!