Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (9): 686-692    DOI: 10.11901/1005.3093.2015.129
Current Issue | Archive | Adv Search |
Modification and Performance of Polyacrylonitrile with Maleic Anhydride Grafted Krill Protein
Shanwei QI,Jing GUO(),Siyang MU,Lijun YANG,Sen ZHANG,Yue YU
School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
Cite this article: 

Shanwei QI,Jing GUO,Siyang MU,Lijun YANG,Sen ZHANG,Yue YU. Modification and Performance of Polyacrylonitrile with Maleic Anhydride Grafted Krill Protein. Chinese Journal of Materials Research, 2015, 29(9): 686-692.

Download:  HTML  PDF(2745KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Copolymer AKPM-g-PAN was prepared by copolymerization of maleic anhydride grafted krill protein (AKP) and polyacrylonitrile (PAN), then AKPM-g-PAN composite fibers were prepared by wet spinning, whilst there mechanical and thermal properties were investigated. The results show that: the best condition for preparation of AKPM-g-PAN are: the ratio of AKP, maleic anhydride and PAN is 2: 2: 12.5, the initiator is 10% (mass fraction) PAN, and the reaction temperature is 60℃. The molecular weight of the polymer obtained after grafting polymerization by the optimal process condition was 158010. The fracture strength of AKPM-g-PAN composite fibers increased with increasing concentration of spinning solution, whilst increases first and then decreases with the increase of the concentration and temperature of the coagulation bath; and the addition of AKP leads to increase of water retention rate of composite fiber, influencing polyacrylonitrile original regularity of molecular chain, and lost of a part of crystallization ability.

Key words:  organic polymer materials      polyacrylonitrile      krill protein      modify      wet spinning     
Received:  17 March 2015     
Fund: *Supported by National Natural Science Foundation of China No.51373027.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.129     OR     https://www.cjmr.org/EN/Y2015/V29/I9/686

Level A B C D
AKP/Maleic anhydride/g PAN /g Initiator /g Temperature /℃
1 1.0 7.5 1.0 60
2 1.5 10.0 1.5 70
3 2.0 12.5 2.0 80
Table 1  Orthogonal test of preparing AKPM-g-PAN
Fig.1  Schematic diagram of the grafted polymer
Test number A B C D Molecular weight, ×104
#1 1 1 1 1 8.028
#2 1 2 2 2 9.4648
#3 1 3 3 3 10.486
#4 2 1 2 3 5.336
#5 2 2 3 1 5.248
#6 2 3 1 2 12.884
#7 3 1 3 2 6.442
#8 3 2 1 3 7.556
#9 3 3 2 1 15.801
Value average 1 8.326 6.602 9.489 9.692
Value average 2 7.823 7.090 9.867 9.264
Value average 3 9.933 12.390 6.725 7.126
Value average K 2.110 5.788 3.142 2.566
Table 2  Results and analysis of graft polymer molecular weight
Fig.2  FTIR spectra of PAN, AKPM-g-PAN and AKPM
Fig.3  TG curves of PAN, AKPM, #3, #6 and #9 sample
Fig.4  XRD spectra of PAN, AKPM, #3, #6 and #9 sample
Fig.5  DSC of #3, #6 and #9 sample
Fig.6  Relationship between coagulation bath temperature and the tensile strength of fiber
Fig.7  Relationship between coagulation bath concentration and the tensile strength of fiber
Fig.8  Relationship between spinning solution concentration and the tensile strength of fiber
Fig.8  Morphology of is spinned in the following. Its spinning conditions are 35 of bath temperature, 8% of solution concentration, 40% of the coagulation bath concentration, respectively. (a) cross- section of #9 sample, (b) surface of #9 sample
1 H. T. Chiu, J. M. Lin, T. H. Cheng, S. Y. Chou. Fabrication of electrospun polyacrylonitrile ion-exchange membranes for application in lysozym, Express Polymer Letters, 4(5), 308(2011)
2 HU Xuemin,XIAO Changfa, FENG Yan, Preparation and characterization of modified polyacrylonitrile fiber by collagen, Journal of Functional Materials, 10(44), 1414(2013)
2 (胡雪敏, 肖长发, 封 严, 胶原蛋白改性聚丙烯腈纤维制备及性能表征, 功能材料, 10(44), 1414(2013))
3 DENG Huiyu,CHEN Qingchun, MA Jianguo, Development of the surface modification of polyacrylonitrile and acrylonitrile based copolymers membranes, Polymer Materials Science & Engineering, 2(24), 1(2008)
3 (邓慧宇, 陈庆春, 马建国, 聚丙烯腈及丙烯腈共聚物膜表面改性研究进展, 高分子材料科学与工程, 2(24), 1(2008))
4 Hae Rim Jung,Min-A Kim, Yong-Soo Seo, Yang-Bong Lee, Byung-Soo Chun, Seon-Bong Kim, Decreasing effect of fluoride content in Antarctic krill (Euphausia superba) by chemical treatments, International Journal of Food Science and Technology, 48, 1252(2013)
5 HUANG Hongliang,CHEN Xuezhong, FENG Chunlei, Situation analysis of Antarctic krill resources development, Fishery Modernization, 1, 48(2007))
5 (黄洪亮, 陈雪忠, 冯春雷, 南极磷虾资源开发现状分析, 渔业现代化, 1, 48(2007)
6 SUN Song,YAN Xiaojun, Active substances in the antarctic krill, Advances in Polar Science, 13(3), 213(2001)
6 (孙 松, 严小军, 南极大磷虾的生物活性物质及其用途研究进展, 极地研究, 13(3), 213(2001))
7 Morales?M ?S,Ogale A A, Carbon fibers derived from UV-assisted stabilization of wet-spun polyacrylonitrile fibers,? Journal?of?Applied?Polymer Science, 16(130), 2494(2013)
8 Liu Y,Li X, Lu J C, Electrically conductive poly(3, 4-ethylenedioxythiophene) -polystyrene sulfonic acid/polyacrylonitrile composite fibers prepared by wet spinning, Journal of Applied Polymer Science, 1(130), 370(2013)
9 ?Zhang Z,Jiang W, Wang?Y J, Wu Y C, Hou X, ?Synthesis of monodispersed?polyacrylonitrile microspheres, Journal?of?Applied?Polymer?Science, 5(125), 4142(2012)
10 Duan Q J,Wang B, Wang H P, Effects of stabilization temperature on structures and properties of polyacrylonitrile (PAN)-based stabilized electrospun nanofiber mats, Journal of Applied Polymer Science, 12(51), 2428(2012)
11 FEI Zhengdong,WAN Lingshu, ZHONG Mingqiang, XU Zhikang, Synthesis of acrylonitrile-n- isopropylacrylamide graft copolymers for the preparation of thermal responsive polyacrylonitrile membranaes, Acta Polymerica Sinica, 4, 404(2012)
11 (费正东, 万灵书, 钟明强, 徐志康, 丙烯腈-N-异丙基丙烯酰胺接枝共聚物的合成及其对聚丙烯腈分离膜的改性, 高分子学报, 4, 404(2012))
12 Jyotishkumar P,Pionteck J, H?u?ler L, Adam G, Thomas S, Poly(acrylonitrile-butadiene-styrene) modi?ed epoxy–amine systems analyzed by FTIR and modulated DSC, Journal of Macromolecular Science: Physics, 7(51), 1425(2012)
13 B. L. Chaudhari, Z. V. P. Murthy,Preparation, characterization, and performance of sulfated chitosan/polyacrylonitrile composite nanofiltration membranes, Journal of Dispersion Science & Technology, 3(34), 389(2013)
14 J. N.Wang, W. Qin, X. Q. Liu, H. Q.Liu,Synthesis and characterization of hydroxyapatite on hydrolyzed polyacrylonitrile nanofiber templates, RSC Advances, 3, 11132(2013)
15 ?Jyotishkumar P, Pionteck J, Moldenaers Paula, Thomas Sabu, Preparation and properties of TiO2-filled poly(acrylonitrile-butadiene-styrene)/epoxy hybrid composites, Journal of Applied Polymer?Science, 4(127), 3159(2013)
16 WU Shuai,LI Ting, CUI Dongxu, XU Mulianghua, Orientation of amorphous region in polyacrylonitrile fibers, Polymer Materials Science & Engineering, 11(30), 54(2014)
16 (武 帅, 李 婷, 崔东旭, 徐木梁华, 聚丙烯腈纤维非晶区的取向结构, 高分子材料科学与工程, 11(30), 54(2014))
17 WANG Yongwei,ZHU Bo, CAO Weiwei, JIANG Xinbin, WANG Xihai, Thermal performances of acrylonitrile/acrylamide copolymers, Journal of Functional Materials, 11(44), 1531(2013)
17 (王永伟, 朱 波, 曹伟伟, 姜新斌, 王西海, 聚丙烯腈/丙烯酰胺共聚物热性能研究, 功能材料, 11(44), 1531(2013))
18 JIAO Na, LI Long, WANG Mengfan, XU Mulianghua, CAO Weiyu, Effect of stretching on the phase transition behavior of polyacrylonitrile precursor, Polymer Materials Science & Engineering, 11(30), 103(2014
18 (焦 娜, 李 龙, 王梦梵, 徐木梁华, 曹维宇, 湿法纺丝过程中牵伸对聚丙烯腈原丝相转变行为的影响, 高分子材料科学与工程, 11(30), 103(2014))
19 Huang W,Wang X Q, Jia Y T, Li X Q, Zhu Z G, Li Y, Si Y , Ding B, Wang X L, Yu J Y, Highly sensitive formaldehyde sensors based on polyvinylamine modified polyacrylonitrile nanofibers, RSC Advances, 3, 22994(2013)
20 OU Yang,WU Qingyun, WAN Lingshu, YANG Haocheng, XU Zhikang, Preparation of porous polyacrylonitrile ultrathin fibers by electrospinning with nonsolvent induced phase separation, Acta Polymerica Sinica, 2, 248(2013)
20 (欧 洋, 吴青芸, 万灵书, 杨皓程, 徐志康, 采用静电纺丝/非溶剂致相分离制备聚丙烯腈多孔超细纤维的研究, 高分子学报, 2, 248(2013))
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
No Suggested Reading articles found!