Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (6): 422-428    DOI: 10.11901/1005.3093.2014.752
Current Issue | Archive | Adv Search |
Effect of Heat Treatment Process on Mechanical Properties of a Medium Carbon Low Alloy Steel
Wei PAN,Zulai LI(),Quan SHAN,Yehua JIANG,Zhiyang FENG,Rong ZHOU
School of Materials Science and Engnineering, Kunming University of Science and Technology,Kunming 650093, China
Cite this article: 

Wei PAN,Zulai LI,Quan SHAN,Yehua JIANG,Zhiyang FENG,Rong ZHOU. Effect of Heat Treatment Process on Mechanical Properties of a Medium Carbon Low Alloy Steel. Chinese Journal of Materials Research, 2015, 29(6): 422-428.

Download:  HTML  PDF(4797KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of heat treatment processes on the microstructure and mechanical properties of a medium carbon low alloy steel was studied by means of color metallography, XRD and mechanical tests. The adopted heat treatment processes included air quenching and then austempering in salt bath, water-cooling and then austempering in salt bath, as well as directly austempering in salt bath. The results show that after treatments according to the above three processes the steel may exhibited microstructure composed of different amount of bainite and martensite, and better mechanical properties in comparison with the cast ones, i.e. its impact toughness and hardness were increased by 92%-183% and 31%-55% respectively. For the case of air cooling and then austempering in salt bath, the amount of bainite decreased gradually with the increase of air cooling time while the amount of martensite progressively increased, correspondingly its hardness and impact toughness showed a tendency of increase and decrease respectively. The mechanical performance of the medium carbon low alloy steel is closely related to the ratio of bainite to martinsite in the microstructure. It is noted that the steel with a duplex microstructure of 50%-60% bainite and 30%-40% martensite exhibited an optimal comprehensive mechanical performance.

Key words:  metallic materials      bainite / martensite mixed microstructure      austempering      color metallography      ductile fracture     
Received:  17 December 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.752     OR     https://www.cjmr.org/EN/Y2015/V29/I6/422

Elements C Si Mn Cr B
Content 0.4-0.5 2.0-2.3 2.5-2.8 0.5-0.75 0.005-0.0075
Table 1  Chemical composition of low alloy medium carbon steel (%, mass fraction)
Fig.1  XRD patterns of samples of the different heat treatment process
Fig.2  Microstructure of low alloy medium carbon steel at cast (a), water-cooling 2-4 s and austempering in austempering in salt bath, eroded by 4% nitric acid alcohol solution (b)
Fig.3  Colored metallography of different heat treatment process (a) water-cooling 2-4 s and austempering in austempering in salt bath, (b) austempering in austempering in salt bath, (c) air-cooling 2-4 s and austempering in austempering in salt bath, (d) air-cooling 6-8 s and austempering in austempering in salt bath, (e) air-cooling 10-12 s and austempering in austempering in salt bath
Heat treatment process Bainite/% Martensite/% Residual austenite/%
Water-cooling 2-4 s and austempering in salt bath 29.28 45.72 25
Austempering in salt bath 56.26 26.14 7.6
Air-cooling 2-4 s and austempering in salt bath 35.6 56.3 8.1
Air-cooling 6-8 s and austempering in salt bath 25.8 61.5 12.7
Air-cooling 10-12 s and austempering in salt bath 14.9 70.7 14.1
Table 2  Content of microstructure after different heat treatment process
Fig.4  Effects curve of air-cooling time on the content of microstructure after air-cooling and austempering in salt bath heat treatment process
Heat treatment process Toughness (J/cm2) Hardness (HRC)
Water-cooling 2-4 s and austempering in salt bath 13.5 55.0
Austempering in salt bath 17.0 52.5
Air-cooling 2-4 s and austempering in salt bath 15.0 57.0
Air-cooling 6-8 s and austempering in salt bath 13.0 59.1
Air-cooling 10-12 s and austempering in salt bath 11.5 62.1
Cast 6.0 40.0
Table 3  Comparing before and after heat treatment process of the sample hardness and impact toughness
Fig.5  Effects of air-cooling time on mechanical properties in air-cooling and austempering in salt bath heat treatment process
Fig.6  Fracture morphology of impact samples at casting (a), air-cooling 2-4 s and austempering in salt bath (b)
1 R.C.D.Richardson,The Relationships between Wear Behavior and Basic Material Properties for Pearitic Steels, Wear of materials, 60(1), 75(1980)
2 Ahmadabadi M N,Bainitic transformation in austempered ductile iron with reference to untransformed austenite volume phenomenon, Metallurgical and Materials Transactions A, 28(10), 2159(1997)
3 FANG Hongsheng,LIU Dongyu,BAI Bingzhe ,CHANG Kaidi ,GU Jialin , YANG Zhigang, The latest advancement of carbide free bainite/martensite duplex phase steel, Heat Treatment of Metals, 26(10), 4(2001)
3 (方鸿生, 刘东雨, 白秉哲, 常开地, 顾家琳, 杨志刚, 无碳化物贝氏体/马氏体复相钢的新进展, 金属热处理, 26(10), 4(2001))
4 Tomita Y,Morioka K, Effect of microstructure on transformation-induced plasticity of silicon-containing low-alloy steel, Materials Characterization, 38(4), 243(1997)
5 HUANG Weigang,XU Rong,FANG Hongsheng , ZHENG Yan kang, Impact toughness of medium low carbon silicon modified bainitic steel, Journaol of Iron and Steel Research, 9(2), 31(1997)
5 (黄维刚, 徐 蓉, 方鸿生, 郑燕康, 中低碳含硅空冷贝氏体钢的冲击韧性, 钢铁研究学报, 9(2), 31(1997))
6 SONG Yujiu,LU Jintang, LIU Jinghua, SHEN Lian, RAO Qichang, ZHOU Huijiu, The strength and toughness of the martensite bainite mixed microstructure, Transactions of Materials and Heat Treatment, 3(1), 11(1982)
6 (宋余九, 芦锦堂, 刘静华, 沈 莲, 绕启昌, 周慧久, 马氏体贝氏体复合组织的强度与韧性, 金属热处理学报, 3(1), 11(1982))
7 LIU Dongyu,XU Hong, YANG Kun, BAI Bingzhe, FANG Hongsheng, Effect of bainite/ martensite mixed microstructure on the strength and tough of low carbon alloy steel, Acta Metallurgica Sinica, 40(8), 882(2004)
7 (刘东雨, 徐 鸿, 杨 昆, 白秉哲, 方鸿生, 贝氏体/马氏体复相组织对低碳合金钢强韧性的影响, 金属学报, 40(8), 882(2004))
8 JIANG Yehua,Doctorate Dissertation, Controlled cooling bainite phase wear-resisting cast iron grinding balls and research of cast steel plate, Kunming University of Science and Technology, 2000
8 (蒋业华, 博士论文, 控制冷却贝氏体复相耐磨铸铁磨球和铸钢衬板的研究, 昆明理工大学, 2000)
9 CAI Minghui,DING Hua, ZHANG Sujian, LI Long, TANG Zhengyou, Deformation and fracture characteristics of ferrite/bainite dual-phase steels, Chinese Journal of Materials Research, 23(1), 83(2009)
9 (蔡明晖, 丁 桦, 张苏建, 李龙, 唐正友, 铁素体/贝氏体双相钢的变形和断裂特性, 材料研究学报, 23(1), 83(2009))
10 Girault E,Jacques P, Harlet Ph,Mols K , Van Humbeeck J Aernoudt E ,Delannay F , Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels, Materials Characterization, 40(2), 111(1998)
11 CUI Zhongqi, TAN Yaochun, Metallography and Heat Treatment, 2nd Edition (Beijing, Mechanical Industry Press, 2007) p.308
11 (260, p.308)
12 ZHAO Hui,SHI Jie, LI Nan, WANG Cunyu,HU Jin , HUI Weijun, CAO Wenquan, Effects of Si on the microstructure and mechanical property of medium Mn seel treated by quenching and partitioning process, Chinese Journal of Materials Research, 25(1), 45(2011)
12 (赵 晖, 时 捷, 李 楠, 王存宇, 胡 劲, 惠卫军, 曹文全, Si对中锰钢淬火配分组织和性能的影响, 材料研究学报, 25(1), 45(2011))
13 CHEN Yantang,FANG Hongsheng, BAI Bingzhe,YANG Zhigang , LI Qi, HOU Chuanji, GAO Fan, Effect of silicon on impact wear behavior of high strength and high toughness bainitic steels, Heat Treatment of Metals, 26(8), 5(2001)
13 (陈颜堂, 方鸿生, 白秉哲, 杨志刚, 李 琪, 侯传基, 高凡, Si对高强度高韧性贝氏体钢冲击磨损性能的影响, 金属热处理, 26(8), 5(2001))
14 LI Shutang, Metal X-ray Diffraction and Electron Microscopic Analysis Technology (Beijing, Metallurgical Industry Press, 1980) p.143
14 (143)
15 HAN Bo,ZHANG Fucheng,LV Bo , ZHENG Chunlei, HAN BoE Lijun, ZHANG Peng, Colored metallography of bainite steel, Heat Treatment of Metals, 34(10), 42(2009)
15 (韩 波, 张福成, 吕 博, 郑春雷, 鄂丽君, 张 朋, 贝氏体钢彩色金相的研究, 金属热处理, 34(10), 42(2009))
16 ZHANG Xun,The application of colored metallographic in power system, Journal of Anhui Electric Power College for Staff, 7(1), 96(2002)
16 (张珣, 彩色金相在电力系统的应用, 安徽电力职工大学学报, 7(1), 96(2002))
17 XU Zuyao,LI Xuemin, The diffusion of carbon during the formation of low carbon martensite, Acta Metallergica Sinica, 19(2), 83(1983)
17 (徐祖耀, 李学敏, 低碳马氏体形成时碳的扩散, 金属学报, 19(2), 83(1983))
18 REN Yongqiang,SHANG Chengjia,ZHANG Hongwei ,YUAN Shengfu , CHEN Erhu, Effect of retained austenite on toughness and plasticity of 0.23C-1.9Mn-1.6Si steel, Chinese Journal of Materials Research, 28(4), 274(2014)
18 (任勇强, 尚成嘉, 张宏伟, 袁胜福, 陈二虎, 0.23C-1.9Mn-1.6Si钢中的残余奥氏体对韧塑性的影响, 材料研究学报, 28(4), 274(2014))
19 YANG Fubao,BAI Bingzhe, LIU Dongyu,CHANG Kaidi ,WEI Dongyuan , FANG Hongsheng, Microstructure and properties of a carbide-free bainite/martensite ultra-high strength steel, Acta Metallurgica Sinica, 40(3), 296(2004)
19 (杨福宝, 白秉哲, 刘东雨, 常开地, 韦东远, 方鸿生, 无碳化物贝氏体/马氏体复相高强度钢的组织与性能, 金属学报, 40(3), 296(2004))
20 YAN Yunhui,MA Pengren,CAO Yuguang , ZHANG Jian, Recognition and classification of metal fracture surface images based on syntax pattern recognition, China Mechanical Engineering, 15(3), 259(2004)
20 (颜云辉, 马朋仁, 曹宇光, 张坚, 金属断口图像句法模式识别与分类方法, 中国机械工程, 15(3), 259(2004))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!