Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (3): 233-240    DOI: 10.11901/1005.3093.2013.832
Current Issue | Archive | Adv Search |
Optimization of Preparation Technology of Micro-arc Oxidation Coatings on Pure Titanium
Yuhai LI1,**(),Shisong LU1,Hui ZHAO1,Yan ZHAO2
1. College of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159
2. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001
Cite this article: 

Yuhai LI,Shisong LU,Hui ZHAO,Yan ZHAO. Optimization of Preparation Technology of Micro-arc Oxidation Coatings on Pure Titanium. Chinese Journal of Materials Research, 2014, 28(3): 233-240.

Download:  HTML  PDF(3107KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The preparation parameters were systematically optimized in order to produce an appropriate micro-arc oxidation (MAO) coating on pure titanium. Then the optimized MAO ceramic coating was subjected to alkali treatment. The bioactivity of the alkalized coating was evaluated by immersion test in a simulated body fluid (SBF) for certain times. The porosity, pore density and pore diameter of the MAO coatings were examined by formula scoring method. The results show that the best MAO may be produced with the following electrical parameters: positive voltage 400 V, duty ratio 60%, frequency 550 Hz, and oxidation time 25 min. The results of examination by XRD, SEM and EDS show that a uniform porous anatase TiO2 coating grew on titanium with porosity 12%, pore density 0.70×108, and a mean pore diameter 3 μm. The alkalized coating treated by alkali method was completely covered by bone-like apatite when it was cultured in SBF for 14 days. The calcium deficiency like apatite with a composition similar to that of human bone grew on the coating exhibits excellent bioactivity. But the apatite could dissolve with the extension of the culturing time.

Key words:  inorganic non-metallic materials      pure titanium      micro-arc oxidation      formula scoring method      electrical parameter     
Received:  07 November 2013     
Fund: *Supported by Science & Technology Project in Shenyang No.F12-268-4-00

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.832     OR     https://www.cjmr.org/EN/Y2014/V28/I3/233

Element C Fe Si N H Ti
0.20 0.03 0.15 0.05 0.15 Margin
Table 1  Chemical compositions of TA2 (mass fraction, %)
Level Factor A Factor B Factor C Factor D
Positive voltage ∕ V Frequency ∕ Hz Duty ratio ∕ % Oxidation time ∕ min
1 350 500 50 10
2 400 550 55 15
3 450 600 60 20
4 500 650 65 25
Table 2  Factors and levels in orthogonal design
Order Reagent Amount
1 NaCl 7.996 g
2 NaHCO3 0.350 g
3 KCl 0.224 g
4 K2HPO43H2O 0.228 g
5 MgCl26H2O 0.305 g
6 1 mol/L HCl 40 mL
7 CaCl2 0.278 g
8 Na2SO4 0.071 g
9 (CH2OH)3CNH2 6.057 g
Table 3  Reagents for preparation of SBF(1 L, pH=7.25)
No. Factors∕Levels Experimental targets
A B C D Error Diameter/μm PPI/(×108 ε/%
1 1 1 1 1 1 1.5 0.63 9.9
2 1 2 2 2 2 1.5 0.61 11.0
3 1 3 3 3 3 1.6 0.62 11.3
4 1 4 4 4 4 2.0 0.51 10.6
5 2 1 2 3 4 2.5 0.41 11.1
6 2 2 1 4 3 3.0 0.72 12.1
7 2 3 4 1 2 2.8 0.65 12.8
8 2 4 3 2 1 4.0 0.44 11.7
9 3 1 3 4 2 4.0 0.33 11.7
10 3 2 4 3 1 4.0 0.37 10.9
11 3 3 1 2 4 4.0 0.33 10.6
12 3 4 2 1 3 4.0 0.29 9.9
13 4 1 4 2 3 5.0 0.23 12.1
14 4 2 3 1 4 5.0 0.38 12.0
15 4 3 2 4 1
16 4 4 1 3 2
Table 4  Design and result of the orthogonal test
Fig.1  Photograph of seriously ablated coatings
No. Score of experimental target
Diameter PPI ε Comprehensive Score
1 0 0.82 0 1.64
2 0.03 0.78 0.38 2.73
3 0.03 0.80 0.48 3.07
4 0.14 0.57 0.24 2.00
5 0.29 0.37 0.41 2.26
6 0.43 1.00 0.76 4.71
7 0.37 0.86 1.00 5.09
8 0.71 0.43 0.62 3.43
9 0.71 0.20 0.62 2.97
10 0.71 0.29 0.34 2.31
11 0.71 0.20 0.24 1.83
12 0.71 0.12 0 0.95
13 1.00 0 0.76 3.28
14 1.00 0.31 0.72 3.78
15
16
Table 5  Results of the formula scoring method
Factor Comprehensive score
A B C D E
K1 9.44 10.15 8.18 11.46 7.38 ∑=40.05
K2 15.49 13.53 5.94 11.27 10.79
K3 8.06 9.99 13.25 7.64 12.01
K4 7.06 6.38 12.68 9.68 9.87
k1 2.36 2.54 2.73 2.87 2.46
k2 3.87 3.38 1.98 2.82 3.60
k3 2.02 3.33 3.31 2.55 3.00
k4 3.53 2.13 3.17 3.23 2.47
Range 1.85 1.25 1.33 0.68 1.14
Secondary factors A C B D
Excellent scheme A2C3B2D4
Table 6  Statistical results of the formula scoring method
Fig.2  SEM images of coatings’ surface after process optimization, Fig.b is partial enlarged image of Fig.2a
Fig.3  SEM photograph on cross sections of coating after process optimization
Element Atomic fraction ∕ %
O 67.52
P 8.66
Ti 23.82
Table 7  Elemental composition of the surfaces of coatings
Fig.4  XRD pattern of coating surface after process optimization
Fig.5  SEM images of the surfaces of NaOH treated Ti coatings cultured in SBF for14 d (a) and 21 d (b)
Element Composition
14 d 21 d
Ti 0 17.85
O 69.17 78.26
P 14.19 1.94
Ca 16.64 1.96
Ca ∕ P 1.17 1.01
Table 8  Elemental composition of the surfaces of NaOH treated Ti coatings after cultured in SBF for different days (atomic fraction, %)
Fig.6  XRD patterns of the precipitation on the surfaces of NaOH treated Ti coatings after cultured in SBF for different days
1 LI Yuhai,YUAN Yu, XING Guihe, Effect of electrical parameters on the microstructure of micro-arc oxidation ceramic coatings on titanium substrate, Materials Protection, 44(3), 39(2011)
1 (李玉海, 原 瑜, 邢贵和, 纯钛材微弧氧化电参数对陶瓷层组织结构的影响, 材料保护, 44(3), 39(2011))
2 DENG Shuhao,YI Danqing, GONG Zhuqing, SU Yuchang, Study on micro-arc oxidation processes for Mg alloy, Materials Science and Technology, 15(1), 22(2007)
2 (邓姝皓, 易丹青, 龚竹青, 苏玉长, 镁合金微弧氧化膜的制备工艺研究, 材料科学与工艺, 15(1), 22(2007))
3 YUAN YU,Preparation technology of the bioceramic coating on titanium by micro-arc oxidation, Thesis for the Master Degree, Shenyang Ligong University(2011)
3 (原 瑜, 纯钛微弧氧化生物陶瓷膜制备工艺, 硕士学位论文, 沈阳理工大学(2011))
4 NI JIAhua,The study of hydroxyapatite bioceramic coatings by micro-arc oxidation on titanium, Master degree thesis, Qingdao University of Science and Technology(2007)
4 (倪嘉桦, 微弧氧化法制备钛基羟基磷灰石生物陶瓷膜研究, 硕士学位论文, 青岛科技大学(2007))
5 SU Honghua,YAO Zhengjun, Fuzzy analysis method for multi-index orthogonal test, Journal of Nanjing University of Aeronautics and Astronautics, 36(1), 29(2004)
5 (苏宏华, 姚正军, 多指标正交试验的模糊分析方法, 南京航空航天大学学报, 36(1), 29(2004))
6 QUAN Wei,HU Zhengqian, Chernega S. M., MA Jin, Micro-arc oxidation coating preparation process for aluminum alloy surfaces, Plating and Finishing, 31(11), 39(2009)
6 (全 伟, 胡正前, Chernega S. M., 马晋, 铝合金表面微弧氧化涂层制备工艺, 电镀与精饰, 31(11), 39(2009))
7 DENG Shuhao,YI Danqing, LIU Yaoqiong, LI Hui, CHEN Jun, Electrochemical preparation and performance of biological ceramic film on titanium alloy, Surface Technology, 37(6), 5(2008)
7 (邓姝皓, 易丹青, 刘瑶琼, 李 惠, 陈 军, 钛合金生物活性陶瓷膜的电化学制备和性能研究, 表面技术, 37(6), 5(2008))
8 ZHENG Hongye,WANG Yongkang, LI Bingsheng, HAN Gaorong, Preparation of micro-arc oxidation ceramic coating on aluminum alloys, Materials Protection, 37(2), 19(2004)
8 (郑宏晔, 王永康, 李炳生, 韩高荣, 铝合金微弧氧化表面陶瓷膜的制备, 材料保护, 37(2), 19(2004))
9 ZHAO Yingzheng,LU Cuitao, MEI Xingguo, Multi-index test applied in orthogonal design, Journal of Medical Postgraduates, 17(7), 624(2004)
9 (赵应征, 鲁翠涛, 梅兴国, 常用多指标综合评价法在优选实验中的应用, 医学研究生学报, 17(7), 624(2004))
10 YUAN Yufeng,Analysis of multi-target orthogonal experiment, Journal of Hubei Automotive Industries Institute, 19(4), 53(2005)
10 (苑玉凤, 多指标正交试验分析, 湖北汽车工业学院学报, 19(4), 53(2005))
11 FU Tao,HUANG Ping, HAN Yong, XU Kewei, Apatite formation induce by alkaline treatment on titanium alloy substrate, Rare Metal Materials and Engineering, 29(3), 168(2000)
11 (付 涛, 黄 平, 憨 勇, 徐可为, 碱液处理诱导钛合金基体表面沉积磷灰石层, 稀有金属材料与工程, 29(3), 168(2000))
12 Oyane Ayako,Kim Hyun-Min, Furuya Takuo, Kokubo Tadashi, Miyazaki Toshiki, Nakamura Takashi, Preparation and assessment of revised simulated body fluids, Journal of Biomedical Materials Research A, 65(2), 188(2003)
13 WANG Yanlan,ZHANG Fang, Calculation of porous copper’s by SEM method, Initiators and Pyrotechnics, 6, 49(2012)
13 (王燕兰, 张 方, 扫描电镜法用于多孔金属孔隙率的计算, 火工品, 6, 49(2012))
14 XU Jingjing,SHEN Lixing, ZHAO Gaiping, CHEN Qiou, Trabecular bone porosity measurement based on digital image processing, Journal of Clinical Rehabilitative Tissue Engineering Research, 14(17), 3062(2010)
14 (徐晶晶, 沈力行, 赵改平, 陈奇欧, 基于数字图像处理技术测量松质骨孔隙率的方法, 中国组织工程研究与临床康复, 14(17), 3062(2010))
15 LV Weiling,Control principle of fabrication and characterization for micro-structure and properties of microarc oxidation coatings on AZ91D magnesium, PhD thesis, Lanzhou University of Technology(2010)
15 (吕维玲,AZ91D镁合金微弧氧化膜制备的调控及膜层表征方法的研究, 博士学位论文, 兰州理工大学(2010))
16 XU Baiming,Effects of technique parameters on microstructure and performances of micro-arc oxidation coating on magnesium alloy, Master Degree thesis, Jilin University(2007)
16 (徐佰明, 工艺参数对镁合金微弧氧化膜层微观组织和性能的影响, 硕士学位论文, 吉林大学(2007))
17 YU Weixian,YU Dezhen, MA Jie, BI Wenxiang, Coatings containing hydroxyapatite fabricated by micro-arc oxidation on pure titanium, Journal of Clinical Stomatology, 25(7), 390(2009)
17 (于维先, 于德珍, 马 洁, 毕文翔, 微弧氧化法在纯钛表面生成含羟基磷灰石陶瓷膜的研究, 临床口腔医学杂志, 25(7), 390(2009))
18 YU Jiaguo,ZHAO Xiujian, ZHAO Qingnan, Effects of surface morphology of photocatalytic porous TiO2 thin films on hydrophilicity, Journal of the Chinese Ceramic Society, 28(3), 245(2000)
18 (余家国, 赵修建, 赵青南, 光催化多孔TiO2薄膜的表面形貌对亲水性的影响, 硅酸盐学报, 28(3), 245(2000))
19 WANG Wei,ZHANG Dawei, TAO Chunxian, WANG Qi, HUANG Yuanshen, NI Zhengji, ZHUANG Songlin, Physical characteristics affecting superhydryphilicity behavior of TiO2 films, Journal of Atomic and Molecular Physics, 29(1), 125(2012)
19 (王 伟, 张大伟, 陶春先, 王 琦, 黄元申, 倪争技, 庄松林, 对TiO2亲水特性有决定性影响的物理因素, 原子与分子物理学报, 29(1), 125(2012))
20 ZHU Ruifu,WANG Zhigang, WANG Aijuan, XIAO Guiyong, Lü Yupeng, LI Shitong, Hanawa T, Microstructure and performance of porous ceramics film on surface of pure titanium, Transactions of Materials and Heat Treatment, 30(2), 129(2009)
20 (朱瑞富, 王志刚, 王爱娟, 肖桂勇, 吕宇鹏, 李士同, 隆夫, 纯钛表面微弧氧化多孔陶瓷膜的结构特性, 材料热处理学报, 30(2), 129(2009))
21 GUO Honglei,GU Deen, YANG Bangchao, Progress in the study on the photocatalytic active TiO2 thin film, Electronic Components and Materials, 25(3), 1(2006)
21 (郭洪蕾, 顾德恩, 杨邦朝, 光催化活性TiO2薄膜的研究进展, 电子元件与材料, 25(3), 1(2006))
22 Y. T. Sul, C. B. Johansson, Y. Jeong, K. R?ser, A. Wennerberg, T. Albrektsson,Oxidized implants and their influence on the bone response, Journal of Materials Science: Materials in Medicine, 12(10/12), 1210(2004)
23 Long-Hao Li,Young-Min Kong, Hae-Won Kim, Young-woon Kim, Hyoun-Ee Kim, Seong-Joo Heo, Jai-Young Koak, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials, 25(14), 2867(2004)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!