Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (1): 59-66    DOI: 10.11901/1005.3093.2013.493
Current Issue | Archive | Adv Search |
Preparation and Properties of Reactive Powder Concrete with Circulating Fluidized Bed Combustion Fly Ash
Yan GAO,Shuzhen LV(),Zhongyuan LU,Jun LI,Dan ZHANG
State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010
Cite this article: 

Yan GAO,Shuzhen LV,Zhongyuan LU,Jun LI,Dan ZHANG. Preparation and Properties of Reactive Powder Concrete with Circulating Fluidized Bed Combustion Fly Ash. Chinese Journal of Materials Research, 2014, 28(1): 59-66.

Download:  HTML  PDF(2912KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The mix proportion design of reactive powder concrete (RPC) with circulating fluidized bed combustion (CFBC) fly ash was done through orthogonal design. The effect of curing system on strength and shrinkage property of RPC with CFBC fly ash, and the effect of CFBC fly ash on shrinkage property of RPC were investigated. The results show that RPC which could have flexural strength of 26 MPa and compressive strength of 140 MPa was prepared by using CFBC fly ash, silica fume, superplasticizer, intermediate quartz sand, PO42.5R and hydrothermal curing treatment; Hydrothermal curing can promote the hydration of RPC with CFBC fly ash and form a relatively dense structure, so its early strength was higher than that of standard curing about 30 MPa, but high temperature made early-formed AFt transform into AFm, so later strength was decreased; Compared to standard curing, Hydrothermal curing promoted the early shrinkage of RPC with CFBC fly ash, reduced the late drying shrinkage, but its overall shrinkage rate was still greater than that of standard curing; The expansibility characteristics of CFBC fly ash can effectively reduce the large self-shrinkage of RPC.

Key words:  inorganic non-metallic material      CFBC fly ash      RPC      curing system      strength      shrinkage rate     
Received:  12 July 2013     
Fund: *Supported by National Key Technology R&D Program for the 12th Five-Year Plan of China No. 2011BAA04B04 (11zg410105), and the Key Technology R&D Program of Sichuan Province No. 11zs2116.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.493     OR     https://www.cjmr.org/EN/Y2014/V28/I1/59

Material Loss SiO2 Al2O3 Fe2O3 CaO MgO SO3 f-CaO
Cement 4.98 21.51 5.33 3.18 61.63 2.68 3.30
CFBC fly ash 4.50 45.22 15.39 12.02 10.70 1.92 10.72 1.21
Silica fume 6.38 87.65 0.37 0.08 0.44 1.47
Table1  Chemical composition of raw materials (mass fraction, %)
Fig.1  XRD pattern of CFBC fly ash
Level Factor (the ratio of factor to cementing material)
Water-binder ratio(A) Silica fume(B)/% CFBC fly ash(C)/% Intermediate quartz sand(D) Superplasticizer(E) /%
1 0.2 0 0 0.8 0.5
2 0.18 5 5 1.0 0.8
3 0.22 10 10 1.2 1.0
4 0.17 15 15 1.4 1.5
Table 2  Experiment factor and levels
No. Factor 7 d strength/MPa 28 d strength/MPa
A B C D E Flexural strength Compressive strength Flexural strength Compressive strength
1 1 1 1 1 1 18.9 93.2 18.3 103.5
2 1 2 2 2 2 17.2 92.1 18.7 103.6
3 1 3 3 3 3 15.7 94.6 19.7 114.6
4 1 4 4 4 4 13.8 80.9 17.2 114.3
5 2 1 2 3 4 15.3 70.6 15.7 90.2
6 2 2 1 4 3 19.2 100.8 20.5 120.5
7 2 3 4 1 2 18.9 109.9 22.7 132.2
8 2 4 3 2 1 12.5 96.7 17.3 98.8
9 3 1 3 4 2 12.7 60.6 12.5 71.3
10 3 2 4 3 1 15.1 94.1 19.0 115.2
11 3 3 1 2 4 8.9 47.9 10.3 60.0
12 3 4 2 1 3 11.2 69.2 14.6 81.4
13 4 1 4 2 3 20.2 109.6 22.9 115.6
14 4 2 3 1 4 15.8 78.9 17.9 97.2
15 4 3 2 4 1 12.0 90.6 13.9 97.4
16 4 4 1 3 2 17.1 95.7 21.3 114.9
Table 3  Orthogonal test and results
Fig.2  Diagram of sum of strength (K) and content of each factors, (a) the sum of 7d flexural strength, (b) the sum of 28d flexural strength, (c) the sum of 7d compressive strength, (d) the sum of 28d compressive strength (A-water-binder ratio, B-silica fume, C-CFBC fly ash, D-intermediate quartz sand, E-superplasticizer
No. Proportioning (The ratio of factor to cementing material) 7 d strength /MPa 28 d strength /MPa Curing type
Water-binder ratio Silica fume/% CFBC fly ash/% Intermediate quartz sand Superplasticize/% Flexural strength Compressive strength Flexural strength Compressive strength
BZ 0.18 5 15 1.2 1.0 21.3 109.7 23.4 130.3 standard curing
R60 26.2 132.5 24.8 132.1 60℃ hot water curing
R90 26.1 139.3 24.7 134.4 90℃ hot water curing
Z60 26.4 133.2 24.4 132.8 60℃ steam curing
Z90 26.0 140.8 23.4 135.0 90℃ steam curing
Table 4  Strength of RPC with CFBC fly ash under different curing systems
Fig.3  SEM images of RPC with CFBC fly ash hydrated for 7 d under different curing systems, (a) BZ, (b) R60
Fig.4  Shrinkage rate (a) and dry shrinkage rate (b) of RPC with CFBC fly ash under different curing systems
Fig.5  XRD patterns of RPC with CFBC fly ash hydrated for 3 d under different curing systems
Fig.6  DTA (a) and DTG (b) analysis of RPC with CFBC fly ash hydrated for 7 d under different curing systems
No. Cementing material proportion/% Shrinkage rate/%
Cement Silica fume CFBC fly ash 3 d 6 d 14 d 28 d 45 d 70 d 90 d 230 d
RPC1 80 5 15 0.0128 0.0060 -0.0038 -0.0092 -0.0230 -0.0322 -0.0644 -0.0639
RPC2 80 20 0 -0.0054 -0.0208 -0.0260 -0.0360 -0.0497 -0.0626 -0.0838 -0.0830
RPC3 95 5 0 0.0067 -0.0034 -0.0056 -0.0113 -0.0248 -0.0380 -0.0650 -0.0648
Table 5  Cementing material proportion and shrinkage rate of RPC
Fig.7  Shrinkage rate of three groups RPC
Fig.8  SEM images of three groups RPC hydrated for 7 d, (a) RPC1, (b) RPC2, (c) RPC3
Fig.9  XRD patterns of three groups RPC hydrated for 3 d
1 P. Richard, M. Cheyrezy,Composition of reactive powder concretes, Cement and Concrete Research, 25(7), 1501(1995)
2 GENG Chunlei,XU Ling, CHEN Hongyan, ZHANG Zuotai, LIN Ling, WANG Xiuteng, YU Dingxin, On research progress and application of reactive powder concrete, Materials Review, 26(3), 70(2012)
2 (耿春雷, 许 零, 陈红岩, 张作泰, 林 翎, 王秀腾, 於定新, 活性粉末混凝土的研究与工程应用进展, 材料导报, 26(3), 70(2012))
3 YAN Zhigang,LI Zhanhui, Existing condition and development of the research on reactive powder cconcrete,
3 (闫志刚, 李占辉, 活性粉末混凝土的研究现状与发展, 中国科技论文在线)
4 BI Qiaowei,YANG Zhaopeng, An outline of the study and the application of the reactive powder concrete, Shanxi Architecture, 34(17), 5(2008)
4 (毕巧巍, 杨兆鹏, 活性粉末混凝土的研究与应用概述, 山西建筑, 34(17), 5(2008))
5 SHI tao,YE qing, Existing problems in the research and application of reactive powder concrete, New Building Materials, (5), 23(2003)
5 (施 韬, 叶 青, 活性粉末混凝土的研究和应用中存在的问题, 新型建筑材料, (5), 23(2003))
6 QIAN Jueshi,ZHENG Hongwei, SONG Yuanming, WANG Zhi, JI Xiankun, Special properties of fly ash and slag of fluidized bed coal combustion, Journal of the Chinese Ceramic Society, 36(10), 1396(2008)
6 (钱觉时, 郑洪伟, 宋远明, 王 智, 纪宪坤, 流化床燃煤固硫灰渣的特性, 硅酸盐学报, 36(10), 1396(2008))
7 ZHU Wenshang,YAN Bilan, JIANG Lizhen, Current situation on utilization of circulated fluidized bed combustion(CFBC) ashes, Coal Ash, (3), 25(2011)
7 (朱文尚, 颜碧兰, 江丽珍, 循环流化床燃煤固硫灰渣研究利用现状, 粉煤灰, (3), 25(2011))
8 XIA Yanqing,YAN Yun, HU Zhihua, Research on affecting factor to performance of non-autoclaved aerated concrete with circulating fluidized bed fly ash, Journal of Wuhan University of Technology, 34(3), 23(2012)
8 (夏艳晴, 严 云, 胡志华, 固硫灰免蒸压加气混凝土性能影响因素的研究, 武汉理工大学学报, 34(3), 23(2012))
9 GAO Yan,LV Shuzhen, DUAN Xinyong, JIA Huixia, WU Congliang, Effect of CFBC fly ash on properties of cement, Journal of Wuhan University of Technology, 35(4), 17(2013)
9 (高 燕, 吕淑珍, 段新勇, 贾会霞, 吴从亮, 固硫灰对水泥性能的影响, 武汉理工大学学报, 35(4), 17(2013))
10 HE Feng,HUANG Zhengyu, Selection of raw materials and parameters of mix design for active powder concrete, New Building Materials, (3), 74(2007)
10 (何 峰, 黄政宇, 活性粉末混凝土原材料及配合比设计参数的选择, 新型建筑材料, (3), 74(2007))
11 P. K. Mehta, P. J. M. Moneteiro, Concrete Microstructure, Properties and Materials (Beijing, China Electric Power Press, 2008)
11 (
12 K. Yoshida,YU Hong, Effect of curing temperatures on the strength development and hydration heat of low thermal cement, Science and Technology of Overseas Building Materials, 15(1), 33(1994)
12 (K. Yoshida,余 红, 养护温度对低热水泥强度发展和水化热的影响, 国外建材科技, 15(1), 33(1994))
13 CAI Anlan,LI Shunkai, YAN Sheng, XU Zhongzi, Influence of curing temperatures on drying shrinkage characteristics of portland cement mortar with high doping of fly ash, Journal of the Chinese Ceramic Society, 33(1), 100(2005)
13 (蔡安兰, 李顺凯, 严 生, 许仲梓, 养护温度对高掺量粉煤灰硅酸盐水泥砂浆干缩性能的影响, 硅酸盐学报, 33(1), 100(2005))
14 GENG Jian,PENG Bo, SUN Jiaying, Effect of steam curing system on pore structure of cement paste, Journal of Building Materials, 14(1), 117(2011)
14 (耿 健, 彭 波, 孙家瑛, 蒸汽养护制度对水泥石结构的影响, 建筑材料学报, 14(1), 117(2011))
15 Physical chemistry teaching research section of Tianjin university, Physical Chemistry, Vol.2 (Beijing, People's Education Press, 1979) p.231-245
15 (天津大学物理化学教研室编, 物理化学(下)(北京, 人民教育出版社, 1979) p.231-245)
16 LI Qinghai,Influence of hydrothermal curing on strength and microstructure of sulfoaluminate cement concrete, Journal of Building Materials, 7(1), 29(2004)
16 (李清海, 湿热养护硫铝酸盐水泥混凝土的强度及微结构, 建筑材料学报, 7(1), 29(2004))
17 XIE Ying,HOU Wenping, WANG Xiangdong, Research on application of differential thermal analysis in cement hydration, Cement, (5), 44 (1997)
17 (谢 英, 侯文萍, 王向东, 差热分析在水泥水化研究中的应用, 水泥, (5), 44 (1997))
18 YANG Nanru, YUE Wenhai, The Handbook of Inorganic Metalloid Materials Atlas (Wuhan, Wuhan University of Technology Press, 2000)
18 (杨南如, 岳文海, 无机非金属材料图谱手册 (武汉, 武汉工业大学出版社, 2000)
19 H. F. W. Taylor, Cement Chemistry (London, Academic Press, 1990)p.374-379
20 SHEN Wei, HUANG Wenxi, MIN Panrong, Cement Technology (Wuhan, Wuhan University of Technology Press , 1991)p.248-249
20 (沈威, 黄文熙, 闵盘荣, 水泥工艺学 (武汉, 武汉工业大学出版社, 1991)p.248-249)
21 SHEN Yang,Effect of the silica fume on the early shrinkage of hardened cement paste, Journal of Building Materials, 5(4), 375(2002)
21 (沈 洋, 硅灰对硬化水泥浆体早期收缩的影响, 建筑材料学报, 5(4), 375(2002))
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] DENG Hailong, LIU Bing, GUO Yang, KANG Heming, LI Mingkai, LI Yongping. Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism[J]. 材料研究学报, 2023, 37(1): 55-64.
[14] QI Yunchao, FANG Guodong, ZHOU Zhengong, LIANG Jun. In-plane Tensile Strength for Needle-punched Composites Prepared by Different Needling Processes[J]. 材料研究学报, 2023, 37(1): 21-28.
[15] CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints[J]. 材料研究学报, 2022, 36(8): 617-627.
No Suggested Reading articles found!