Please wait a minute...
Chinese Journal of Materials Research  2013, Vol. 27 Issue (3): 259-267    DOI:
Original Article Current Issue | Archive | Adv Search |
Effect of Cooling Rate on Exfoliation Corrosion of Al-Zn-Mg-Cu Alloy Thick Plate
LI Chengbo LIU Shengdan** WANG Guowei JIN Yanan ZHANG Xinming
(Key Labratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, School of Materials Science and Engineering, Central South University, Changsha 410083)
Cite this article: 

LI Chengbo,LIU Shengdan**,WANG Guowei,JIN Yanan,ZHANG Xinming. Effect of Cooling Rate on Exfoliation Corrosion of Al-Zn-Mg-Cu Alloy Thick Plate. Chinese Journal of Materials Research, 2013, 27(3): 259-267.

Download:  PDF(5840KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of cooling rate on exfoliation corrosion of Al-Zn-Mg-Cu alloy thick plate was investigated by polarization curve test, corrosion immersion test and end quench method. The results show that with cooling rate deceasing, the resistance to exfoliation corrosion decreased, from EB to ED, the corrosion potential decreased, the corrosion current density increased, and the polarization resistance decreased. There is a linear relationship between polarization resistance and cooling rate. The decreasing of cooling rate results in the higher coverage ratio and lower copper content of the grain boundary precipitates, wider precipitate free zone near grain boundaries, which are the primarily responsible for lower resistance to exfoliation corrosion.

Key words:  materials failure and protection      aluminum alloy      exfoliation corrosion      grain boundary precipitates      precipitate free zone     
Received:  19 November 2012     
ZTFLH:  TB304  
Fund: 

*Supported by National Key Basic Research and Development Program of China No.2012CB619500.

About author:  **To whom correspondence should be addressed, Tel: (0731)88830265,E-mail: csuliusd@163.com

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2013/V27/I3/259

1 S. D. Liu, X.M. Zhang, M. A. Chen, Influence of aging on quench sensitivity effect of 7055 aluminum alloy, Materials Characterization, 59(1), 53(2008)
2 LIU Shengdan, ZHANG Xinming, HUANG Zhenbao, The effects of quenching rates on the microstructure and mechanical properties of 7055 aluminum alloy, Materials Science and Technology, 16(5), 650(2008)
(刘胜胆, 张新明, 黄振宝, 淬火速率对7055铝合金组织和力学性能的影响, 材料科学与工艺, 16(5), 650(2008))
3 LIU Shengdan, LI Chengbo, LI Lulu, DENG Yunlai, ZHANG Xinming, Hardenability of 7055 aluminum alloy plate, The Chinese Journal of Nonferrous Metals, 22(6), 1564(2012)
(刘胜胆, 李承波, 李璐璐, 邓运来, 张新明, 7055铝合金厚板的淬透性, 中国有色金属学报, 22(6), 1564(2012))
4 XIAO Daihong, CHEN Songyi, CHEN Kanghua, Effect of quenching technique on properties of forged aluminum alloy AA7150 with minor Sc, The Chinese Journal of Nonferrous Metals, 20(2), 226(2010)
(肖代红, 陈送义, 陈康华, 淬火工艺对含Sc的AA7150锻造铝合金性能的影响, 中国有色金属学报, 20(2), 226(2010))
5 J. S. Robinson, R. L. Cudd, Quench sensitivity and tensile property inhomogeneity in 7010 forgings, Journal of Materials Processing Technology, 119(1-3), 261(2001)
6 ZHANG Xinming, LIU Shengdan, LIU Ying, ZHANG Xiaoyan, Influence of quench rate and zirconium content on intergranular corrosion of 7055 type aluminum alloy, Journal of Central South University: Science and Technology, 38(2), 181(2007)
(张新明, 刘胜胆, 刘瑛, 张小艳, 淬火速率和锆含量对7055型铝合金晶间腐蚀的影响, 中南大学学报(自然科学版), 38(2), 181(2007))
7 C. Henon, G. Pouget, T. Warner, Exfoliation corrosion mechanism: interplay between intergranular corrosion and stress corrosion cracking during exfoliation corrosion of AA7449, Materials Science Forum, 519-521, 693(2006)
8 T. Marlaud, B. Baroux, A. Deschamps, Understanding the compromise between strength and exfoliation corrosion in high strength 7000 alloys, Materials Science Forum, 519-521, 455(2006)
9 CHEN Songyi, CHEN Kanghua, PENG Guosheng, LIANG Xin, CHEN Xuehai, Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy, Transactions of Nonferrous Metals Society of China, 1(22), 47(2012)
10 S. G. Pantelakis, P. G. Daglaras, C. A. Apostolopoulos, Tensile and energy density properties of 2024, 6013, 8090 and 2091 aircraft aluminum alloy after corrosion exposure, Theoretical and Applied Fracture Mechanics, 33(2), 5775(2000)
11 LIAO Wenbo, LIU Xinyu, LIU Shengdan, CHEN Hui, ZHANG Xinming, Effects of local corrosion on tensile properties of 7055 aluminum alloys after different aging treatments, The Chinese Journal of Nonferrous Metals, 21(8), 1855(2011)
(廖文博, 刘心宇, 刘胜胆, 陈 慧, 张新明, 局部腐蚀对不同热处理状态7055铝合金拉伸性能的影响, 中国有色金属学报, 21(8), 1855(2011))
12 LIAO Wenbo, LIU Xinyu, LIU Shengdan, ZHANG Xinming, Effect of exfoliation corrosion on mechanical properties of 7055 aluminum alloy sheet, Journal of Central South University: Science and Technology, (6), 2137(2012)
(廖文博, 刘心宇, 刘胜胆, 张新明, 剥落腐蚀对7055铝合金板材力学性能的影响, 中南大学学报(自然科学版), (6), 2137(2012))
13 DENGYunlai, ZHANG Yong, ZHANG Xinming, Jominy end quench for aluminum alloy, CN 200710034410.8(2007)
(邓运来, 张 勇, 张新明, 铝合金淬透性的测试装置与方法, 中国, 200710034410. 8(2007))
14 LIU Shengdan, ZHANG Xinming, YOU Jianghai, HUANG Zhenbao, ZHANG Chong, ZHANG Xiaoyan, TTP curve of 7055 aluminum alloy and its application, The Chinese Journal of Nonferrous Metals, 16(12), 2034(2006)
(刘胜胆, 张新明, 游江海, 黄振宝, 张 翀, 张小艳, 7055铝合金的TTP曲线及其应用, 中国有色金属学报, 16(12), 2034(2006))
15 LIU Shengdan, LI Chengbo, DENG Yunlai, ZHANG Xinming, The in?uence of aging on the hardenability of 7055 aluminum alloy thick plate, Acta Metallurgica Sinica, 48(3), 343(2012)
(刘胜胆, 李承波, 邓运来, 张新明, 时效对7055铝合金厚板淬透性的影响, 金属学报, 48(3), 343(2012))
16 GB/T 22639-2008, Test method of exfoliation corrosion for wrought aluminium and aluminium alloys
(GB/T 22639-2008, 铝合金加工产品的剥落腐蚀试验方法)
17 J. D. Robson, P. B. Prangnell, Predicting recrystallised volume fraction in aluminium alloy 7050 hot rolled plate, Materials Science and Technology, 18(6), 607(2002)
18 LIU Wenjun, ZHANG Xinming, LIU Shengdan, ZHOU Xinwei, Effect of homogenization on quenching sensitivity of 7050 aluminum alloy plates, The Chinese Journal of Nonferrous Metals, 20(6), 1102(2010)
(刘文军, 张新明, 刘胜胆, 周新伟, 均匀化对7050铝合金板材淬火敏感性的影响, 中国有色金属学报, 20(6), 1102(2010))
19 S.D. Liu, W.J. Liu, Y. Zhang, X.M. Zhang, Y.L. Deng, Effect of microstructure on the quench sensitivity of AlZnMgCu alloys, Journal of Alloys and Compounds, 507, 53(2010)
20 YIN Zhimin, FANG Jiafang, HUANG Jiwu, Effects of aging treatment on intercrystalline corrosion and exfoliation corrosion behavior of 7A52 aluminum alloy, Journal of Central South University: Science and Technology, 38(4), 617(2007)
(尹志民, 方家芳, 黄继武, 时效工艺对7A52铝合金晶间腐蚀和剥蚀行为的影响, 中南大学学报(自然科学版), 38(4), 617(2007))
21 LI Jinfeng, ZHENG Ziqiao, REN Wenda, Function mechanism of secondary phase on localized corrosion of Al alloy, Materials Review, 19(2), 81(2005)
(李劲风, 郑子樵, 任文达, 第二相在铝合金局部腐蚀中的作用机制, 材料导报, 19(2), 81(2005))
22 T. Marlaud, B. Malki, C. Henon, Relationship between alloy composition, microstructure and exfoliation corrosion in Al-Zn-Mg-Cu alloys, Corrosion Science, 53, 3139(2011)
23 ZHANG Qi, LI Di, DING Xueyi, Electrochemical mechanism of intergranular corrosion in LC4 aluminum alloy, Materials Protection, 29(8), 6(1996)
(张 琦, 李 荻, 丁学谊, LC4铝合金晶间腐蚀电化学机理, 材料保护, 29(8), 6(1996))
24 T. Ramgopal, P. I. Gouma, G. S. Frankel, Role of grain boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150, Corrosion, 58(8), 687(2002)

[1] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[2] NIE Jingjing, GONG Zhengxuan, SUN Jingli, YANG Sida, XIA Xianchao, XU Aijie. Microstructure and Properties of Butt Welding Joints of 2195-2219 Al-alloy Plates[J]. 材料研究学报, 2023, 37(2): 152-160.
[3] YU Cong, CHEN Leping, JIANG Hongxiang, ZHOU Quan, YANG Chenggang. Effect of Deep Cryogenic-Aging Treatment on Microstructure and Mechanical Properties of 7075 Al-alloy[J]. 材料研究学报, 2023, 37(2): 120-128.
[4] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[5] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[6] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[7] YANG Bing, LIU Chunzhong, GAO Enzhi, SUN Wei, LIU Ting, ZHANG Hongning, ZHU Mingwei, LU Tianni. Deformation Behavior of Cast and Annealed 2024 Al-alloy at Different Temperatures[J]. 材料研究学报, 2022, 36(10): 730-738.
[8] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] LIAO Zexin, LI Chengbo, LIU Shengdan, TANG Jianguo, HUANG Chuanyan, ZHU Xianyan. Effect of Post Aging on Mechanical Properties of Friction Stir Welded 7046 Aluminum Alloy[J]. 材料研究学报, 2021, 35(7): 543-552.
[10] DU Bangdeng, LIU Jun, WANG Xiaowan, WANG Wei, CHEN Demin. Effect of Heat Treatment on Microstructure and Al-water Reactivity of Al-Mg-Ga-In-Sn Alloys[J]. 材料研究学报, 2021, 35(1): 25-35.
[11] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[12] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[13] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[14] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[15] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
No Suggested Reading articles found!