Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (10): 730-738    DOI: 10.11901/1005.3093.2021.357
ARTICLES Current Issue | Archive | Adv Search |
Deformation Behavior of Cast and Annealed 2024 Al-alloy at Different Temperatures
YANG Bing1, LIU Chunzhong1(), GAO Enzhi1, SUN Wei2, LIU Ting1, ZHANG Hongning1, ZHU Mingwei1, LU Tianni1
1.School of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2.Liaoning Zhongwang Group Co. Ltd., Liaoyang 111003, China
Cite this article: 

YANG Bing, LIU Chunzhong, GAO Enzhi, SUN Wei, LIU Ting, ZHANG Hongning, ZHU Mingwei, LU Tianni. Deformation Behavior of Cast and Annealed 2024 Al-alloy at Different Temperatures. Chinese Journal of Materials Research, 2022, 36(10): 730-738.

Download:  HTML  PDF(5854KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Deformation behavior at different temperatures of the cast and annealed 2024 Al-alloy was investigated by means of MMS thermal simulation test machine. The constitutive equation and DMM (Dynamic material model) processing map of the alloy were established. The theoretical support for 2024 Al-alloy extrusion part with an extrusion ratio of 26.9 was provided by the results obtained from DMM map. The microstructures and mechanical properties of the alloys in different situations, namely, the cast plus post annealing, isothermally extruded and isothermally extruded plus post annealing were characterized by OM(Optical microscope), TEM (Transmission electron microscope) and tension tester. The results show that the test articles of 2024 Al-alloy experienced isothermal extrusion with large extrusion ratio can be obtained by strain rate within the range of 0.01~0.1 s-1 at temperatures within 395~450℃, according to the proposed DMM processing map, consequently, the resulted test articles present refined microstructure with excellent mechanical properties.

Key words:  metallic materials      2024 aluminum alloy      stress-strain curve      constitutive equation      DMM processing map      isothermal extrusion     
Received:  16 June 2021     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China(51405310);Department Science and Technology of Liaoning Province(2019JH1/10100012);Educational Department of Liaoning Province(JYT19064)
About author:  LIU Chunzhong, Tel: (024)89724198, E-mail: czliu@sau.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.357     OR     https://www.cjmr.org/EN/Y2022/V36/I10/730

Fig.1  Schematic diagram of isothermal extrusion structural parts
Fig.2  Schematic diagram of tensile specimen (unit: mm)
Fig.3  Stress-true strain curves for the alloy at different strain rate
Fig.4  Relationship between peak stress, strain rate and deformation temperature of 2024 aluminum alloy under different deformation conditions (a) lnε˙-σ, (b) lnε˙-lnσ, (c) lnε˙-ln[sinh(ασ)], (d) ln[sinh(ασ)]-T-1
Strain rate/s-1Peak stress/MPa
573 K623 K673 K723 K
0.0194.1472.1350.1637.81
0.1137.58100.5678.3260.19
1158.97119.45100.5780.98
10172.57136.4117.7184.33
Table 1  Peak stress at different temperatures and strain rates
Fig.5  Relationship between flow stress and Zener-Hollomon parameter of 2024 aluminum alloy
Fig.6  3D maps of power dissipation of 2024 aluminum alloy
Fig.7  3D maps of rheological instability of 2024 aluminum alloy
Fig.8  DMM processing maps of 2024 aluminum alloy
Fig.9  As cast annealed microstructure of 2024 aluminum alloy
Fig.10  Extrusion structure of aluminum alloy 2024
Fig.11  TEM images of 2024 aluminum alloy (a) as cast annealed, (b) as extruded, (c) as extrusion annealed
Fig.12  Stress-strain curves of 2024 sample in different states at room temperature
Fig.13  Stress-strain curves of 2024 sample in different directions at room temperature
Stateσb / MPaδ / %
As cast annealed(x-axis)193.62±9.31.78±0.34
As extruded(x-axis)362.12±5.44.33±0.14
As extruded(y-axis)319.77±12.62.63±0.34
As extruded(45°-axis)283.46±10.51.59±0.1
As extrusion annealed(x-axis)198.29±3.98.12±1.46
As extrusion annealed(y-axis)194.57±5.16.43±0.16
As extrusion annealed(45°-axis)196.79±7.15.58±1.01
Table 2  Tensile test results of 2024 aluminum alloy in different states and directions
Fig.14  EBSD orientation map of 2024 alloy as extruded
Fig.15  grain boundary misorientation distribution map of 2024 alloy as extruded
1 Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 2115
邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29: 2115
2 Jiang J F, Wang Y, Xiao G F, et al. Influence of modification, refinement and heat treatment on mechanical properties of A356 Al-alloy components prepared by squeeze casting [J]. Chin. J. Mater. Res., 2020, 34: 881
姜巨福, 王 迎, 肖冠菲 等. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响 [J]. 材料研究学报, 2020, 34: 881
3 Gong X T, Zhou J, Xu W J, et al. The development of isothermal forging technology for aluminum alloy [J]. China Metalf. Equip. Manufact. Technol., 2009, 44: 23
龚小涛, 周 杰, 徐戊娇 等. 铝合金等温锻造技术发展 [J]. 锻压装备与制造技术, 2009, 44: 23
4 Wu D X, Liang Q, Wang J. Hot deformation behavior and constitutive equation of 2024A aluminum alloy [J]. Spec. Cast. Nonferrous Alloy, 2020, 40: 233
吴道祥, 梁 强, 王 敬. 2024A铝合金高温流变行为及本构关系研究 [J]. 特种铸造及有色合金, 2020, 40: 233
5 Zhang T, Zhang S H, Li L, et al. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression [J]. J. Central South Univ., 2019, 26: 2930
doi: 10.1007/s11771-019-4225-1
6 Zhai C H, Feng C H, Chai L H, et al. Rheological deformation behavior of X2A66 aluminum-lithium alloy during isothermal compression [J]. Rare Metal Mater. Eng., 2017, 46: 90
翟彩华, 冯朝辉, 柴丽华 等. X2A66铝锂合金等温压缩时的流变变形行为 [J]. 稀有金属材料与工程, 2017, 46: 90
7 Zhong L W, Gao W L, Feng Z H, et al. Microstructure characteristics and constitutive modeling for elevated temperature flow behavior of Al-Cu-Li X2A66 alloy [J]. J. Mater. Res., 2018, 33: 912
doi: 10.1557/jmr.2017.466
8 He H L, Yi Y P, Cui J D, et al. Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map [J]. Vacuum, 2018, 160: 293
doi: 10.1016/j.vacuum.2018.11.048
9 Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy [J]. Mater. Sci. Eng., 2012, 542A: 79
10 Ashwath P, Joel J, Kumar H G P, et al. Processing and characterization of extruded 2024 series of aluminum alloy [J]. Mater. Today Proceed., 2018, 5(5): 12479
11 Li T, Tao J L, Wang Q Y. The mechanism of fatigue crack initiation of 2024-T3 and 2524-T34 aluminum alloys [J]. Chin. J. Mater. Res., 2011, 25: 67
李 棠, 陶俊林, 王清远. 2024-T3和2524-T34铝合金疲劳裂纹的萌生机制 [J]. 材料研究学报, 2011, 25: 67
12 Wu A, Wu Y, Li G J, et al. A high-fit constitutive equation for 2024 aluminum alloy homogenized cast bar [J]. J. Plast. Eng., 2020, 27: 146
吴 昂, 吴 莹, 李国俊 等. 一种2024铝合金均匀化铸棒的高拟合度本构方程 [J]. 塑性工程学报, 2020, 27: 146
13 May A, Belouchrani M A, Taharboucht S, et al. Influence of heat treatment on the fatigue behaviour of two aluminium alloys 2024 and 2024 plated [J]. Proc. Eng., 2010, 2: 1795
doi: 10.1016/j.proeng.2010.03.193
14 Mirzadeh H. Simple physically-based constitutive equations for hot deformation of 2024 and 7075 aluminum alloys [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1614
doi: 10.1016/S1003-6326(15)63765-7
15 Feng J M, Eliane G, Cao X D, et al. Study on constitutive equations of 2024 aluminum alloy considering the compensation of strain [J]. J. Plast. Eng., 2017, 24(6): 151
冯建铭, Eliane G, 曹旭东 等. 考虑应变补偿的Al2024合金本构方程研究 [J]. 塑性工程学报, 2017, 24(6): 151
16 Chen L, Zhao G Q, Gong J, et al. Hot deformation behaviors and processing maps of 2024 Aluminum alloy in as-cast and homogenized states [J]. J. Mater. Eng. Perf., 2015, 24: 5002
doi: 10.1007/s11665-015-1734-4
17 Li L, Li H Z, Liang X P, et al. Flow stress behavior of high-purity Al-Cu-Mg alloy and microstructure evolution [J]. J. Central South Univ., 2015, 22: 815
doi: 10.1007/s11771-015-2587-6
18 Sun J W, Zhang R W, Li S Y, et al. Research on the thermal denaturation of 5182 aluminium alloy [J]. Nonferrous Metals Sci. Eng., 2018, 9(5): 43
孙军伟, 张荣伟, 李升燕 等. 5182铝合金热变形行为研究 [J]. 有色金属科学与工程, 2018, 9(5): 43
19 Dai Q S, Liu X, Fu P, et al. High-temperature deformation behavior and processing map of 5083 aluminum alloy [J]. J. Central South Univ. (Sci. Technol.), 2017, 48: 1988
戴青松, 刘 栩, 付 平 等. 5083铝合金高温变形行为及加工图 [J]. 中南大学学报(自然科学版), 2017, 48: 1988
20 Cui Z Q, Qin Y C. Metallurgy and Heat Treatment 2nd ed. [M]. Beijing: China Machine Press, 2011
崔忠圻, 覃耀春. 金属学与热处理. 第2版 [M]. 北京: 机械工业出版社, 2011
21 Lin Y C, Xia Y C, Chen X M, et al. Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate [J]. Comput. Mater. Sci., 2010, 50: 227
doi: 10.1016/j.commatsci.2010.08.003
22 Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel [J]. Mater. Sci. Eng., 2009, 500A: 114
23 Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels [J]. Acta Mater., 1996, 44: 137
doi: 10.1016/1359-6454(95)00151-0
24 Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242 [J]. Metall. Trans., 1984, 15A: 1883
25 Chen L, Si J Y, Liu S H, et al. Hot deformation behavior and hot processing map of extruded FGH4096 superalloy [J]. Mater. Rev., 2019, 33: 2047
陈 龙, 司家勇, 刘松浩 等. 挤压态FGH4096合金的热变形行为及热加工图 [J]. 材料导报, 2019, 33: 2047
26 Yang Y T, Luo R, Cheng X N, et al. High temperature plastic deformation behavior and hot workability of an Alumina-forming Austenitic heat-resisting alloy [J]. Chin. J. Mater. Res., 2019, 33: 232
doi: 10.11901/1005.3093.2018.432
杨雨童, 罗 锐, 程晓农 等. 新型含铝奥氏体耐热合金的高温塑性变形行为和热加工性能 [J]. 材料研究学报, 2019, 33: 232
doi: 10.11901/1005.3093.2018.432
27 Cepeda-Jiménez C M, Ruano O A, Carsí M, et al. Study of hot deformation of an Al-Cu-Mg alloy using processing maps and microstructural characterization [J]. Mater. Sci. Eng., 2012, 552A: 530
28 Chen Y Q, Song W W, Pan S P, et al. Effects of coarse S phase on hot deformation behaviors and microstructure evolutions of 2E12 aluminum alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 2267
陈宇强, 宋文炜, 潘素平 等. 粗大S相对2E12铝合金热变形行为及组织演变的影响 [J]. 中国有色金属学报, 2016, 26: 2267
29 Huang Q X, Wang J L, Liu Z H, et al. Effect of annealing temperature on mechanical properties and microstructure of ECAP-extruded 7005 aluminum alloy [J]. Mater. Rev., 2013, 27(22): 101
黄启祥, 王军丽, 刘兆华 等. 退火温度对ECAP变形后7005铝合金组织性能的影响 [J]. 材料导报, 2013, 27(22): 101
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!