Please wait a minute...
Chinese Journal of Materials Research  2013, Vol. 27 Issue (3): 252-258    DOI:
Original Article Current Issue | Archive | Adv Search |
Preparation and Field Emission Properties of TiO2 Nanotube Arrays
YE Yun YAN Min CHEN Tianyuan CAI Shoujin GUO Tailiang**
(College of Physics and Telecommunication Engineering, Fuzhou University, Fuzhou 350002)
Cite this article: 

YE Yun,YAN Min,CHEN Tianyuan,CAI Shoujin,GUO Tailiang**. Preparation and Field Emission Properties of TiO2 Nanotube Arrays. Chinese Journal of Materials Research, 2013, 27(3): 252-258.

Download:  PDF(4525KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Well-aligned TiO2 nanotube arrays were prepared in aqueous hydrofluoric acid electrolyte by anodization in this paper. The morphology and composition of TiO2 nanotube arrays were characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy, respectively, the field emission performance of TiO2 nanotube arrays was measured by field emission testing system, and the effects of pH value of electrolyte on the morphology (length and diameter) of TiO2 nanotube arrays were investigated. The results showed that the field emission properties of TiO2 nanotube arrays were improved due to the change of the morphology by adjusting the pH value of electrolyte. When the pH value of electrolyte was 2.0, the anodized TiO2 nanotube arrays had the lowest turn-on field as 2.52 V/μm and a stable emission current.

Key words:  inorganic non-metallic materials      TiO2 nanotube arrays      Anodization      pH value      XPS      Field emission     
Received:  27 February 2013     
ZTFLH:  TB321  
Fund: 

Supported by National High Technology Research and Development Program for Advanced Materials of China No. 2013AA030601, National Natural Science Foundation of China Nos. 61106053 and 61101169, the Specialized Research Fund for the Doctoral Program of Higher Education of China No. 20103514110007, and the Research Foundation of Education Bureau of Fujian Province No. JA11014.

About author:  **To whom correspondence should be addressed, Tel: (0591)87893299, E-mail: gtl@fzu.edu.cn

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2013/V27/I3/252

1 ZHOU Limin, LIANG Xizhen, CAI Junqing, Preparation of the shape-controlled rutile nano- TiO2 by low temperature hydrothermal method, Chinese Journal of Materials Research, 24(2), 208(2009)
(周利民, 梁喜珍, 蔡俊青, 用低温水热法制备可控形貌金红石型纳米TiO2, 材料研究学报, 24(2), 208(2009))
2 YANG Zunxian, LI Song, GUO Zaiping, GUO Tailiang, Preparation of TiO2(B) @ anatase hybrid nanowires and their lithium storage properties, Journal of Functional Materials, 42(12), 2209(2011)
(杨尊先, 李 松, 郭再萍, 郭太良, 锐钛矿/TiO2(B)复合纳米线制备及其锂存储研究, 功能材料, 42(12), 2209(2011))
3 H.Wang, M.Liu, M.Zhang, P.Wang, H.Miura, Y.Cheng, J.Bell, Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes, Physical Chemistry Chemical Physics, 13(38), 17359(2011)
4 A.S.Attar, M.S.Ghamsari, F.Hajiesmaeilbaigi, S.Mirdamadi, K.Katagiri, K.Koumoto, Synthesis and characterization of anatase and rutile TiO2 nanorods by template-assited method, Journal of Marterials Science, 43(17), 5924(2008)
5 LAN Zhang, WU Jihuai, LIN Jianming, HUANG Miaoliang, Controllable hydrothermal synthesis of nanocrystal TiO2 particles and their use in dye-sensitized solar cells, Science China Chemistry, 55(7), 1308(2012)
(兰 章, 吴季怀, 林建明, 黄妙良, 水热法可控合成二氧化钛纳米晶及其在染料敏化电池中的应用, 中国科学: 化学, 55(7), 1308(2012))
6 S.Sreekantan, K.A.Saharudin, L.C.Wei, Formation of TiO2 nanotubes via anodization and potential applications for photocatalysts, biomedical materials, and photoelectrochemical cell, Materials Science and Engineering, 21(1), 012002(2011)
7 GAO Qian, WANG Shulin, JIAN Dunliang, WANG Haifeng, Influence of different parameters on fabricating TiO2 nano-tube arrays and the crystal structure, Journal of Functional Materials, 42(2), 395(2011)
(高 乾, 王树林, 蹇敦亮, 王海锋, 不同制备条件对二氧化钛纳米管阵列及其结构的影响, 功能材料, 42(2), 395(2011))
8 J.Wang, Z.Q.Lin, Anodic formation of ordered TiO2 nanotube arrays: effect of electrolyte temperature and anodization potential, The Journal of Physical Chemistry C, 113(10), 4026(2009)
9 S.H.Kang, J.Y.Kim, H.S.Kim, Y.E.Sung, Formation and mechanistic study of self-ordered TiO2, Journal of Industrial and Engineering Chemistry, 43(4), 52(2008)
10 J.B.Chen, C.W.Wang, B.H.Ma, Y.Li, J.Wang, Field emission from the structure of well-aligned TiO2/Ti nanotube arrays, Thin Solid Films, 517(15), 4390(2009)
11 R.S.Guo, C.W.Wang, J.B.Chen, J.Wang, L.Q.Wang, W.M.Liu, Field emission from TiO2/Ti nanotube arrays with different morphologies, Physica B, 405(22), 4682(2010)
12 P.G.Chavan, S.V.Shende, D.S.Joag, M.A.More, Photo-enhanced field emission study of TiO2 nanotubes array, Ultramicroscopy, 111(22), 415(2011)
13 Q.Y.Cai, M.Paulose, O. K.Varghese, C.A.Grimes, The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation, Journal of Materials Research, 20(1), 230(2005)
14 WANG Chengwei, MA Baohong, LI Yan, CHEN Jianbiao, WANG Jian, LIU Weimin, Investigation of the controllable growth of the TiO2 nanotube arrays fabricated by anodic oxidation method, Acta Physica Sinica, 57(9), 5800(2008)
(王成伟, 马保宏, 李 燕, 陈建彪, 王 建, 刘维民, 有序TiO2纳米管阵列结构的可控生长及其物相研究, 物理学报, 57(9), 5800(2008))
15 ZHU Weiqing, WANG Shulin, GAO Qian, Anodic growth of ordered TiO2 nanotube arrays, Journal of University of Shanghai for Science and Technology, 32(3), 256(2011)
(朱伟庆, 王树林, 高 乾, 阳极氧化法制备有序TiO2纳米管阵列, 上海理工大学学报, 32(3), 256(2011))
16 Y.Sorachon, K.Woraphong, P.Nutdanai, Effect of anodization parameters on morphologies of TiO2 nanotube arrays and their surface properties, Journal of Chemistry and Chemical Engineering, 6(8), 686(2012)
17 LIU Huanhuan, CHEN Runfeng, MA Cong, ZHANG Shenglan, AN Zhongfu, HUANG Wei, Titanium oxide nanotubes prepared by anodic oxidation and their application in solar cells, Acta Physico-Chimica Sinica, 27(5), 1017(2011)
(刘欢欢, 陈润锋, 马 琮, 张胜兰, 安众福, 黄 维, 阳极氧化法制备二氧化钛纳米管及其在太阳能电池中的应用, 物理化学学报, 27(5), 1017(2011))
18 NING Chengyun, WANG Yuqiang, ZHANG Huade, TAN Guoxin, DENG Chunlin, LIU Xujian, Study on preparation of TiO2 nanotube arrays by anodizing processes, Chemical Research and Application, 22(1), 14(2010)
(宁成云, 王玉强, 郑华德, 谭帼馨, 邓春林, 刘绪建, 阳极氧化法制备二氧化钛纳米管阵列, 化学研究与应用, 22(1), 14(2010))
19 LIU Dali, FENG Bo, LU Xiong, CHEN Jianmin, Preparation of large-diameter tianina nanotubes by two-step anodic oxidation, Rare Metal Materials and Engineering, 39(2), 325(2010)
(刘达理, 冯 波, 鲁 雄, 陈建敏, 两段式阳极氧化法制备大管径TiO2 纳米管, 稀有金属材料与工程, 39(2), 325(2010))
20 Y.K.Lai, L. Sun, C.J.Liu, J.Chang, Electrochemical fabrication and formation mechanism of TiO2 nanotube arrays on metallic titanium surface, Acta Physico-Chimica Sinica, 20(9), 1063(2004)
21 S.H.Kang, J.Y.Kim, H.S.Kim, Y.E.Sung, Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate, Journal of Industrial and Engineering Chemistry, 14(1), 52(2008)
22 X.L.Cheng, S.J.Hu, T.C.Kuang, P.Zeng, G.R.Xie, Q.Ru, Research progress in preparation of nano thin films, Surface Technology, 34(4), 1(2005)
23 CHENG Wei, XU Jinye, HU Jing, JIN Xuejun, Mechanism and application of TiO2 nanotubes formation via anodization in chloride containing electrolyte, Chinese Journal of Inorganic Chemistry, 25(1), 92(2009)
(程 伟, 徐金叶, 胡 静, 金学军, 含氯离子电解液中二氧化钛纳米管的阳极氧化形成机理及应用, 无机化学学报, 25(1), 92(2009))
24 Z.X.Lin, Y.Ye, Y.A.Zhang, Linear field emission cathode with ZnO grown in aqueous solutions, Journal of Materials Science: Materials in Electronics, 21(12), 1281(2010)
25 Y. Alivov, M.Klopfer, S.Molloi, Enhanced field emission from clustered TiO2 nanotube arrays, Applied Physics Letters, 99(6), 063104(2011)

[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!