Please wait a minute...
Chinese Journal of Materials Research  2012, Vol. 26 Issue (6): 661-666    DOI:
Current Issue | Archive | Adv Search |
Preparation and Photocatalytic Properties of Fe–I–codoped TiO2 Nanocrystalline
MIAO Guashuai1,  MA Xingping1,  WANG Bei1,  ZHANG Huarong1,2
1.School of Physics & Electronics, Henan University, Kaifeng 475004
2.Institute of Microsystemic Physics, Henan University, Kaifeng 475004
Cite this article: 

MIAO Guashuai MA Xingping WANG Bei ZHANG Huarong. Preparation and Photocatalytic Properties of Fe–I–codoped TiO2 Nanocrystalline. Chinese Journal of Materials Research, 2012, 26(6): 661-666.

Download:  PDF(991KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Iron and iodine single doped and co-doped TiO2 nanocrystalline were prepared by the sol–gel method and investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy, respectively. The photocatalytic properties of the samples were evaluated by photocatalytic degrading methylene blue. The results show that all the samples are compose of the anatase phase and the average grain size is 7–15 nm. After the doping, the absorption properties of the samples obviously enhanced. After introducing I into TiO2, the photocatalytic activity of the sample is greatly improved due to the decrease of grain size and extending of optical absorption region. With the increase of Fe doping level, the photocatalytic activities of the codoped samples increase and then decrease gradually. The best photocatalytic property is presented in the codoped sample with 0.2% Fe doping. The mechanisms of the photocatalytic property changes were further discussed by several factors such as grain size, absorption performance and band structure.

Key words:  inorganic non-metallic materials      Fe-I-codoped      nanocrystalline TiO2      methylene blue      photocatalytic activity     
Received:  08 October 2012     
ZTFLH:  TB321  
  O643  
Fund: 

Supported by Scientific and Technological Research Project of Henan Province No.122102210229 and the Research Project of Province-ministry Co-constructing Henan University No.SBGJ090505.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I6/661

1 Michael R. Hoffmann, Scot T. Martin, Wonyong. Choi, Detlef W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem Rev, 95(1), 69(1995)

2 AnWu Xu, Yuan Gao , HanQin Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles, J Catal, 207(2), 151(2002)

3 Suil In, Alexander Orlov, Regina Berg, Felipe Garc´?a, Sergio Pedrosa-Jimenez, Mintcho S. Tikhov , Dominic S. Wright , Richard M. Lambert, Effective visible lightactivated b-doped and B, N-Co-doped TiO2 photocatalysts, J Am Chem Soc, 129(45), 13790(2007)

4 Kojirou Fuku, Dr. Takashi Kamegawa, Dr. Kohsuke Mori, Prof. Hiromi Yamashita, Highly dispersed platinum nanoparticles on TiO2 prepared by using the microwaveassisted deposition method: an efficient photocatalyst for the formation of H2 and N2 from aqueous NH3, Chem Asian J, 7(6), 1366(2012)

5 Shifu Chen, Huaye Zhang, Xiaoling Yu, Wei Liu, Photocatalytic reduction of nitro compounds using TiO2 photocatalyst by UV and vis dye-sensitized systems, Chin J Chem., 29(3), 399(2011)

6 WANG Aijie, ZHOU Aijuan, WANG Liyan, LIU Min, CHEN Zhaobo, Optimization of the operating conditions in a TiO2/Fe3O4–SiO2 photocatalytic reactor for the treatment of industrial waste water containing procion red MX–5B, J Harbin Inst Technol, 18(2), (2011)

7 Zhou S, Lv J, Guo LK, Xu GQ, Wang DM, Zheng ZX, Wu YC, Preparation and photocatalytic properties of N–doped nano–TiO2/muscovite composites, Appl Surf Sci, 258(16), 6136(2012)

8 CHEN Xiaoyun, LU Dongfang, LIN Shufang, Preparation and performance of S–doped S–TiO2/SiO2 visible light response photocatalyst, Chin J Catal., 33(6), 993(2012)

(陈孝云, 陆东方, 林淑芳, S掺杂S--TiO2/SiO2可见光响应光催化剂的制备及性能, 催化学报,  33(6), 993(2012))

9 Guangjuan Ren, Yuan Gao, Xia Liu, An Xing, Huitao Liu , Jungang Yin, Synthesis of high-activity F-doped TiO2 photocatalyst via a simple one-step hydrothermal process, React Kinet Mech Catal, 100(2), 487(2010)

10 Bagwasi S, Tian BZ, Chen F, Zhang JL, Synthesis, characterization and application of iodine modified titanium dioxide in phototcatalytical reactions under visible light irradiation, Appl Surf Sci, 258(8), 3927(2011)

11 Zhang YH, Lv FZ, Wu T, Yu L, Zhang R, Shen B, Meng, XH, Ye ZF, Chu PK, F and Fe co-doped TiO2 with enhanced visible light photocatalytic activity, J Sol-gel Sci Technol, 59(2), 387(2011)

12 Benjaram M. Reddy , Pavani M. Sreekanth , and Ettireddy P. Reddy , Surface characterization of La2O3-TiO2 and  V2O5/La2O3-TiO2 catalysts, J Phys Chem B, 106(22), 5695(2002)

13 YANG Qiuwen, LIU Suqin, HUANG Kelong, XU Guoqiang, LI Haibin, Thermal synthesis and characterization of Fe (III) doped mesoporous TiO2 solvent, Natural Science Journal of Xiangtan University, 31(1), 71(2009)

(杨秋文, 刘素琴, 黄可龙, 许国强, 李海斌, Fe(III)掺杂介孔TiO2的溶剂热法合成与表征, 湘潭大学自然科学学报, 31(1), 71(2009))

14 Xiaoting Hong, Zhengpeng Wang, Weimin Cai, Feng Lu, Jun Zhang, Yanzhu Yang, Na Ma, Yingjun Liu, Visiblelight-activated nanoparticle photocatalyst of iodine-doped titanium dioxide, Chem Mater, 17(6), 1548(2005)

15 Wang J S, Yin S, Zhang Q W, Mechanochemial synthesis of SrTiO3-xFx with high visible light photocatalytic activities for nitrogen monoxide destruction, J Mater Chem, 13(9), 2348(2003)

16 Sachiko Tojo, Takashi Tachikawa, Mamoru Fujitsuka Tetsuro Majima, Iodine-doped TiO2 photocatalysts: correlation between band structure and mechanism, J Phys Chem C, 112(38), 14948(2008)

17 Nakamura I, Negishi N, Kutsuna S, Iharab T, Sugiharac S, Takeuchi K, Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, J of Mol Catal A: Chem, 161(1–2), 205(2000)

18 YAO Xianyu, ZHANG Ning, JIAN Lijuan, Influence of Photocatalytic reduction of CO2 and H2O synthetic CH3OH for Sm3+/TiO2 catalyst, Environmental Chemistry, 29(3), 5(2010)

(晁显玉, 张 宁, 简丽娟, Sm3+/TiO2催化剂对光催化还原CO2和H2O合成CH2OH的影响, 环境化学,  29(3), 5(2010))

19 HUANG Xuerong, TANG Yuchao, HUANG Xianhuai, GUI Herong, Photocatalysis performance study progress of Iron modified TiO2, Journal Of Hefei University Of Technology, 29(9), 1124(2006)

(黄雪锋, 唐玉朝, 黄显怀, 桂和荣, 铁改性TiO2光催化性能研究进展, 合肥工业大学学报,  29(9), 1124(2006))

20 YANG Chen, YANG Changjun, FA Wenjun, GONG Chuqing, PENG Tianyou, ZAN Ling, Preparation and properties of elemental iodine doped nanometer TiO2 photocatalyst, Journal of Wuhan University, 54(6), 645(2008)

(杨 陈, 杨昌军, 法文君, 龚楚清, 彭天右, 昝 菱, 单质碘掺杂纳米TiO2光催化剂的制备及性能,武汉大学学报,  54(6), 645(2008))

21 Ye Cong, Jinlong Zhang, Feng Chen, Masakazu Anpo, Dannong He, Preparation, photocatalytic activity, and mechanism of nano–TiO2 co–doped with nitrogen and iron (III), J Phys Chem C, 111(28), 10618(2007)

22 Yelda Yal¸c?n, Murat K?l?¸c, Zekiye C¸ ?nar, A combined experimental and computational approach to the evaluation of visible light activity, Appl Catal B, 99(3–4), 469(2010)

[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!