Please wait a minute...
Chinese Journal of Materials Research  2012, Vol. 26 Issue (5): 557-560    DOI:
Current Issue | Archive | Adv Search |
Study on Sintering Characteristics of Block Magnesite
WU Feng1,2,  LI Zhijian1,2,  QU Dianli1,2,  LI Xinwei1,2,  XU Na1,2,  ZHOU Baoyu1
1.School of High Temperature Materials and Magnesite Resource Engineering, University of Science and Technology Liaoning, Anshan 114051
2.Engineering Research Center of Magnesite Resource and Magnesite Materials Liaoning, Anshan 114051
Cite this article: 

WU Feng LI Zhijian QU Dianli LI Xinwei XU Na ZHOU Baoyu. Study on Sintering Characteristics of Block Magnesite. Chinese Journal of Materials Research, 2012, 26(5): 557-560.

Download:  PDF(855KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The sintering characteristics of block magnesite with different sizes were investigated. The results show that after firing in 400–800℃, the smaller size of the specimens, the higher the decomposition rate and activity of the specimens, as well as the faster decreasing of the bulk density. Sintering of the specimens did not start when fired in 800–1000℃. The sintering speed of the specimens is slow fired in 1000–1300℃, the bulk density increases to 2.00 g/cm3, because magnesite pseudomorph impedes the diffusion of particle during solid sintering. However, the sintering speed increases in 1300–1600℃, the solid sintering turns to liquid sintering, and the bulk density increases to 2.60 g/cm3. Sintering speed of the specimens increases rapidly fired at 1600℃ or higher. The specimens are densified in the completely liquid sintering, bulk density increases to 3.27 g/cm3. The size of specimens have little effect on the final bulk density fired at 1800℃.

Key words:  inorganic non-metallic materials      block magnesite      dead-burned magnesia      sintering     
Received:  04 September 2012     
ZTFLH:  TB321  
  TQ175  
Fund: 

Supported by National Key Technology Research and Development Program of China No.2012BAB06B02.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I5/557

1 DI Sumei, Resource and market of magnesite in China, Non-metallic Mines, 24(1), 5(2001)

(邸素梅, 我国菱镁矿资源及市场, 非金属矿,  24(1), 5(2001))

2 ZHONG Xiangchong, Bulletin of the Chinese Ceramic Society, 25(3), 91(2006)

(钟香崇, 我国镁质耐火材料发展的战略思考, 硅酸盐通报, 25(3), 91(2006))

3 QUAN Yue, How does magnesite industry meet the challenge after China entering WTO–The development situation of magnesite industry in Liaoning Province, Land & Resources, (1), 22(2002)

(全 跃, 菱镁行业如何应对入世挑战, 国土资源, (1), 22(2002))

4 LI Zhijian, Thoughts on magnesia refractory raw materials of Liaoning Province, Refractories, 45(5), 383(2011)

(李志坚, 对辽宁省镁质耐火原料的思考, 耐火材料,  45(5), 383(2011))

5 ZHAO Haixin, Magnesite resource current situation and developing suggestion of Liaoning, Refractories, 43(4), 291(2009)

(赵海鑫, 辽宁菱镁矿资源现状及发展意见, 耐火材料,  43(4), 291(2009))

6 X.W.Liu, Y.L.Feng, H.R.Li, P.Zhang, P.Wang, Thermal decomposition kinetics of magnesite from thermogravimetric data, Journal of Thermal Analysis and Calorimeter, 107(1), 407(2012)

7 LU Guimin, QIU Zhuxian, Calcining kinetics of magnesite, Light Metal, (6), 36(1992)

(路贵民, 邱竹贤, 菱镁矿煅烧动力学, 轻金属, (6), 36(1992))

8 WU Jianguo, DU Dongxing, YU Taoran, WANG Ze, Experimental investigation on calcination characteristics of magnesite, Energy for Metallurgical Industry, 16(1), 50(1997)

(吴建国, 杜东兴, 于陶然, 王 泽, 菱镁矿煅烧特性的实验研究, 冶金能源,  16(1), 50(1997))

9 LI Nan, CHENG Rongrong, Kinetics of sintering and grain growth of MgO during calcination of magnesite, Journal of the Chinese Ceramic Society, 17(1), 64(1989)

(李 楠, 陈荣荣, 菱镁矿煅烧过程中氧化镁烧结与晶粒生长动力学的研究, 硅酸盐学报,  17(1), 64(1989))

10 LI Guangping, ZHANG Zhiping, HUANG Huihuang, A study on activated sintering of natural magnesite, Journal of the Chinese Ceramic Society, 11(2), 193(1983)

(李广平, 张治平, 黄辉煌, 菱镁矿活化烧结研究, 硅酸盐学报,  11(2), 193(1983))

11 Tapan K. Gupta, Sintering ofMgOdensification and grain growth, Journal of Materials Science, 6(1), 25(1971)

12 KONG Fanshu, JIANG Shiying, Study on the mineral chemical composition of Shandong high-silicon magnesite and its phase transformation during heat process, Shandong Science, 5(3), 14(1992)

(孔繁枢, 蒋士英, 山东高硅菱镁矿的化学矿物组成及其加热过程相变的研究, 山东科学,  5(3), 14(1992))

13 ZHANG Haijun, JIA Quanli, DONG Lin, Polycrystalline Powder X Ray Diffraction Technology Principle and Application, first edition (Zhengzhou, Zhengzhou University Press, 2010) p.198

(张海军, 贾全利, 董 林, 粉末多晶X射线衍射技术原理及应用, 第1版 (郑州, 郑州大学出版社, 2010) p.198)

14 CUI Xin, DENG Min, Effect of calcined conditions on activity of MgO, Journal of Nanjing University of Technology (Natural Science Edition), 30(4), 52(2008)

(崔 鑫, 邓 敏, 煅烧制度对MgO活性的影响, 南京工业大学学报(自然科学版),  30(4), 52(2008))

[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
No Suggested Reading articles found!