Please wait a minute...
Chin J Mater Res  2012, Vol. 26 Issue (4): 344-348    DOI:
论文 Current Issue | Archive | Adv Search |
Behaviors of Carbides in Grain–Oriented Electrical Steels during Cold Deformation
ZHANG Maohua, MAO Weimin
Department of Materials, State Key Liboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 10083
Cite this article: 

ZHANG Maohua MAO Weimin. Behaviors of Carbides in Grain–Oriented Electrical Steels during Cold Deformation. Chin J Mater Res, 2012, 26(4): 344-348.

Download:  PDF(791KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The distribution of second phase particles with carbide as main particles in conventional grain–oriented electrical steels during cold deformation processes was observed by field emission scanning electron microscopy, while the areal density of particles of different sizes were statistically determinedThe results show that cold deformation lead in the crushing and dissolving of carbide particles. The dissolution of carbides particles is a spontaneous process when the size of particles are too small. The increase of small size carbide particles and dissolving during cold rolling process is helpful for secondary recrystallization and the forming of sharp Goss texture, it can also accelerate decarburizing procedure after first–time cold roll and advance the development of producing grain–oriented electrical steels with low temperature hot rolling method.
Key words:  metallic materials      grain–oriented electrical steel      second–phase particles      carbide      dissolution     
Received:  15 January 2012     
ZTFLH: 

TG142

 
Fund: 

Supported by National Natural Science Foudation of China No.51171019 and Fundamental Research Foundation of Engineering Research Insitute of USTB No.YJ2010–005.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I4/344

1 M.Muraki, T.Obara, M.Satoh, T.Kan, Control of recrystallization during high–temperature hot–rolling of grain–oriented silicon steel, Journal of Materials Engineering and Performance, 4(4), 413(1995)

2 A.Frank, Jr.Malagari, Method of producing grain oriented silicon steel, U.S.Patent, No.3954521(1976)

3 CHU Shuangjie, QU Biao, DAI Yuanyuan, Influence of some element on the properties of silicon steel, Iron and Steel, 33(11), 68(1998)

(储双杰, 戴元远, 某些元素对硅钢性能的影响, 钢铁,  33(11), 68(1998))

4 J.Languillaume, G.Kapelski, B.Baudelet, Cementite dissolution in heavily cold drawn pearlitic steel wires, Acta Materialia, 45(3), 1201(1997)

5 Yu.Ivanisenko, W.Lojkowski, R.Z.Valiev, H.J.Fecht, The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion, Acta Materialia, 51(18), 5555(2003)

6 Y.J.Li, P.Choi, C.Borchers, S.Westerkamp, Atomic–scale mechanisms of deformation–induced cementite decomposition in pearlite, Acta Materialia, 59(10), 3965(2011)

7 LI Yang, MAOWeimin, Precipitation behaviors of second–phase particles in grain–oriented electrical steels during manufacturing processes, Journal of University of Science and Technology Beijing, 33(4), 439(2011)

(李 阳, 毛卫民, 取向电工钢加工过程中第二相粒子的析出行为, 北京科技大学学报,  33(4), 439(2011))

8 K.Gunther, G.Abbruzzese, S.Fortunati, G.Ligi, Recent technology developments in the production of grain–oriented electrical steel, Steel Research international, 76(6), 413(2005)

9 W.M.Mao, Y.Li, W.Guo, Z.G.An, Influence of MnS Particles inside Grains on the Boundary Migration before Secondary Recrystallization of Grain Oriented Electrical Steels, Solid State Phenomena, 160, 247(2010)

10 W.Guo, W.M.Mao, Y.Li, Z.G.An, Influence of intermediate annealing on final Goss texture formation in low temperature reheated Fe–3%Si steel, Materials Science and Engineering A, 528(3), 931(2011)

11 V.G.Gavriljuk, Decomposition of cementite in pearlitic steel due to plastic deformation, Materials Science& Engineering, 345(1), 81(2003)

12 HE zhongzhi, Electrical steels (Beijing, Metallurgical Industry Press) p.609

(何忠治, 电工钢  (北京, 冶金工业出版社, 1997)  p.609)

13 D.Dorner, S.Zaefferer, D,Raabe, Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal, Acta Materialia, 55(7), 2519(2007)

14 K.Gunther, G.Abbruzzese, S.Fortunate, Recent technology developments in the production of grain–oriented electrical steel, Steel Research International, 76(6), 413(2005)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!