Please wait a minute...
Chin J Mater Res  2012, Vol. 26 Issue (3): 315-320    DOI:
论文 Current Issue | Archive | Adv Search |
Effect of Copper on Strength and Cryogenic Toughness of 9Ni Steel
OUYANG Huangsheng1,2,  PAN Tao2,  SU Hang2,  LIU Hongxi1
1.College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2.Institute for Structural Materials, Central Iron and Steel Research Institute, Beijing 100081
Cite this article: 

OUYANG Huangsheng PAN Tao SU Hang LIU Hongxi. Effect of Copper on Strength and Cryogenic Toughness of 9Ni Steel. Chin J Mater Res, 2012, 26(3): 315-320.

Download:  PDF(1032KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of copper addition on the strength and cryogenic toughness of 9Ni steel was investigated and the mechanism of strengthening and toughening of Cu-bearing 9Ni steel was discussed in connection with the microstructure characteristics. The results show that the room-temperature yield strength and ultimate tensile strength of the 9Ni steels heat-treated by quenching + lamellarizing + tempering (QLT) process increase by about 150 and 105 MPa respectively when the copper content was increased from 0% to 1.5%. And the impact energy at −196   increased as Cu content increases within 1% but decreased beyond 1%. At the same time, highest impact energy reaches to 157 J for Cu content of 1.0% though the steels with other Cu contents also have high level impact energy. The microstructure observation result reveals that, with increasing Cu, the strength increased due to increasing secondary tempered martensite and Cu particles precipitated finely. On the other hand, Cu addition increases the volume fraction of reversed austenite and improves the stability of formed reversed austenite resulting in cryogenic toughness improvement.
Key words:  metallic materials      strength      cryogenic toughness      copper precipitates      reversed austenite     
Received:  09 January 2012     
ZTFLH: 

TG142

 
Fund: 

Supported by National High Technology Research and Development Program of China No.2007AA03Z506.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I3/315

1 ZHANG Futian, LOU Zhifei, Behaviour of microstructure of Ni9 steel under deforming–fracturing, Acta Metall Sin, 30(6), 239(1994)

(张弗天, 楼志飞, Ni9钢的显微组织在变形--断裂过程中的行为, 金属学报, 30(6), 239(1994))

2 YANG Yuehui, CAI Qingwu, WU Huibin, WANG Hua, Formation of reversed austenite and its effect on cryogenic toughness of 9Ni steel during two–phase region heat treatment, Acta Metall Sin, 45(3), 270(2009)

(杨跃辉, 蔡庆伍, 武会宾, 王华, 两相区热处理过程中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响, 金属学报,  45(3), 270(2009))

3 B.Fultz, J.W.Morris, The mechanical stability of precipitated austenite in 9Ni steel, Metall. Trans., 16(12), 2251(1985)

4 Nobuo Nakada, Toru Yamashita, Junaidi Syarif, Toshihiro Tsuchiyama, Setsuo Takaki, Setsuo Takaki, Effect of Cu addition on formation of reversed austenite and hardness in 9%Ni steels, Tetsu–to–Hagane, 89(10), 46(2003)

5 Nobuo Nakada, Junaidi Syarif, Toshihiro Tsuchiyama, Setsuo Takaki, Improvement of strength–ductility balance by copper addition in 9%Ni steels, Materials and Engineering A, 374(1–2), 137(2004)

6 YONG Qilong, The second phase in Iron and steel materials, 1, (Beijing, Metallurgical Industry Press, 2006) p.127

(雍岐龙,  钢铁材料中的第二相, 1 (北京, 冶金工业出版社, 2006) p.127)

7 Chol K.Syn, J.W.Morris, Sungho Jin, Cryogenic fracture toughness of 9Ni steel enhanced through grain refinement, Metall. Mater. Trans., 7(12), 1827(1976)

8 C.W.Marschall, R.F.Hehemann, A.R.Troiano, The characteristics of nine percent nickel low carbon steel, Trans. ASM, 55, 135(1962)

9 B.Fultz, J.I.Kim, Y.H.Kim, H.J.Kim, G.O.Fior, J.W.Morris, The stability of precipitated austenite and the toughness of 9Ni steel, Metall. Trans., 16(12), 2237(1984)

10 E.Rasanen, Decomposition of austenite in Fe–Cu alloys, Scandinavian Journal of Metallurgy, 2(5), 257(1973)

11 Yang Yuehui, Cai Qingwu, Tang Di, Wu Huibin, Precipitation and stability of reversed austenite in 9Ni steel, International Journal of Minerals, Metallurgy, and Materials, 17(5), 587(2010)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!