|
|
Preparation of Low-dimension Carbon Nanostructures via in-situ Catalytic Pyrolysis of Phenolic Resin |
HU Qinghua1,2, WANG Xitang1, WANG Zhoufu1, CHEN Hao2 |
1.The State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081
2.College of Chemistry and Environment Engineering, Jiujiang University, Jiujiang 332005 |
|
Cite this article:
HU Qinghua WANG Xitang WANG Zhoufu CHEN Hao . Preparation of Low-dimension Carbon Nanostructures via in-situ Catalytic Pyrolysis of Phenolic Resin. Chin J Mater Res, 2012, 26(3): 302-308.
|
Abstract Different low-dimension carbon nanostructures, such as onion-like carbon, bamboolike carbon and carbon nanotubes, were prepared via in-situ catalytic pyrolysis of phenolic resin with Ni(NO3)2·6H2O as catalytic precursor, and characterized by X-ray diffraction, field-emission scanning electron microscope and transmission electron microscopy. The results show that carbon nanotubes with a narrow diameter distribution are more easily formed in a compact mass by a well dispersed Ni catalyst when the molar ratio of Ni(NO3)2·6H2O to phenol is under 0.01. When the ratio of Ni(NO3)2·6H2O to phenol is 0.04 above, Ni catalyst were prone to be aggregated, leading to a widened diameter distribution and sparse growth of carbon nanotube. When the ratio reached to 0.10, a more serious catalytic aggregation was observed and no carbon nanotube was prepared. The possible mechanisms were proposed for the formation of onion-like carbon, bamboo-like carbon and the carbon nanotube.
|
Received: 25 October 2011
|
|
Fund: Supported by National Natural Science Foundation of China No.50872098 and the Innovation Team Project from Nature Science Foundation of Hubei Province No.2009CDA050. |
1 R.Taylor, G.J.Langley, H.W.Kroto, D.R.M.Walton, Formation of C60 by pyrolysis of naphthalene, Nature, 366(6457), 728(1993)2 N.I.Alekseyev, G.A.Dyuzhev, Fullerene formation in an arc discharge, Carbon, 41(7), 1343(2003)3 M.Zhao, H.Song, X.Chen, W.Lian, Large-scale synthesis of onion-like carbon nanoparticles by carbonization of phenolic resin, Acta Mateialia, 55(18), 6144(2007)4 H.Abe, Nucleation of carbon onions and nanocapsules under ion implantation at high temperature, Diamond Related Materials, 10(3-7), 1201(2001)5 Z.H.Wang, C.J.Choi, B.K.Kim, Z.D.Zhang, Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vaporcondensation process, Carbon, 41(9), 1751(2003)6 Y.Lu, Z.Zhu, Z.Liu, Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene Carbon, 43(2), 369(2005)7 L.Yang, P.W.May, L.Yin, J.A.Smith, K.N.Rosser, Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid, Diamond Related Materials, 16(4–7), 725(2007)8 G.D.Nessim, M.Seita, K.P.O’Brien, S.A.Speakman, Dual formation of carpets of large carbon nanofibers and thin crystalline carbon nanotubes from the same catalystunderlayer system, Carbon, 48(15), 4519(2010)9 P.Serp, M.Corrias, P.Kalck, Carbon nanotubes and nanofibers in catalysis, Applied Catalysis A:General, 253(2), 337(2003)10 W.Wu, Z.Liu, L.A.Jauregui, Q.Yu, R.Pillai, H.Cao, J.Bao, Y.P.Chen, S.Pei, Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing, Sensor and Actuators B:Chemical, 150(1), 296(2010)11 M.Laskoski, T.M.Keller, S.B.Qadri, Direct conversion of highly aromatic phthalonitrile thermosetting resins into carbon nanotube containing solids, Polymer, 48(26), 7484(2007)12 N.Kasahara, S.Shiraishi, A.Oya, Heterogeneous graphitization of thin carbon fiber derived from phenolformaldehyde resin, Carbon, 41(8), 1654(2003)13 K.Okabe, S.Shiraishi, A.Oya, Mechanism of heterogeneous graphitization observed in phenolic resin-derived thin carbon fibers heated at 3000 s, Carbon, 42(3), 667(2004)14 C.L.Liu, W.S.Dong, J.R.Song, L.Liu, Evolution of microstructure and properties of phenolic fibers during carbonization, Materials Science and Engineering: A, 459(1–2), 347(2007)15 XIAO Shaoyi, LIU Hongbo, CHEN Yangfei, HE Yuede, HU Congcong, Carbon(Tan Su), (2), 3(2010)(肖绍懿, 刘洪波, 陈鸯飞, 何月德, 胡聪聪, 酚醛炭基C/C复合滑板材料的催化石墨化及其性能研究, 炭素, (2), 3(2010))16 LI Yawei, XIE Ting, ZHAO Lei, Structure and oxidation resistance of pyrolytic carbon from phenol resin-doped Ni2O3 powder, Journal of Wuhan University Science and Technology, 34(1), 18(2011)(李亚伟, 谢 婷, 赵 雷, 氧化镍掺杂酚醛树脂热解炭的结构及抗氧化性研究, 武汉科技大学学报, 34(1), 18(2011))17 I.Stamatin, A.Morozan, A.Dumitru, V.Ciupina, G.Prodan, J.Niewolski, H.Figiel, The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins, Physica E:Low-dimensional Systems and Nanostructures, 37(1-2), 44(2007)18 M.Zhao, H.Song, Catalytic graphitization of phenolic resin, Journal of Materials Science & Technology, 27(3), 266(2011)19 M.Houll´e, A.Deneuve, J.Amadou, D.B´egin, C.Pham-Huu, Mechanical enhancement of C/C composites via the formation of a machinable carbon nanofiber interphase, Carbon, 46(1),76(2008)20 P.Xiao, X.Lu, Y.Liu, L.He, Effect of in situ grown carbon nanotubes on the structure and mechanical properties of unidirectional carbon/carbon composites, Materials Science and Engineering A, 528(7-8), 3056(2011) 21 C.A.Lytle, W.Bertsch, M.McKinley, Determination of novolac resin thermal decomposition products by pyrolysisgas chromatography-mass spectrometry, Journal of Analytical and Applied Pyrolysis, 45(2), 121(1998)22 W.Brockner, C.Ehrhardt, M.Gjikaj, Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O, in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O, Thermochimica Acta, 456(1), 64(2007)23 DENG Xiaoyan, ZHANG Zhikun, Mechanism and non-isothermal kinetics of thermal decomposition of Ni(NO3)2·6H2O, Journal of Qingdao University Science and Technology (Natural Science Edition), 27(1), 24(2006)(邓晓燕, 张志焜, Ni(NO3)2·6H2O的热分解机理及非等温动力学参数, 青岛科技大学学报(自然科学版), 27(1), 24(2006))24 J.Michalowski, D.Mikociak, K.J.Konsztowicz, S.Blazewicz, Thermal conductivity of 2D C-C composites with pyrolytic and glass-like carbon matrices, Journal of Nuclear Materials, 393(1), 47(2009)25 A.Gorbunov, O.Jost, W.Pompe, A.Graff, Solid–liquid–solid growth mechanism of single-wall carbon nanotubes, Carbon, 40(1), 113(2002)26 E.F.Kukovitsky, S.G.L’vov, N.A.Sainov, VLS-growth of carbon nanotubes from the vapor, Chemical Physics Letters, 317(1-2), 65(2000)27 A.Gorbunov, O.Jost, W.Pompe, A.Graff. Role of the catalyst particle size in the synthesis of single-wall carbon nanotubes. Applied Surface Science, 197-198, 563(2002)28 O.P.Krivoruchko, V.I.Zaikovskii, A new phenomenon involving the formation of liquid mobile metal–carbon particles in the low-temperature catalytic graphitisation of amorphous carbon by metallic Fe, Co and Ni, Mendeleev Communications, 8(3), 97(1998)29 S.F.Lee, Y.P.Chang, L.Y.Lee, Effects of annealing Ni catalyst in nitrogen-containing gases on the surface morphology and field-emission properties of thermal chemical vapor deposited carbon nanotubes, New Carbon Materials, 23(4), 302(2008) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|