Please wait a minute...
Chin J Mater Res  2012, Vol. 26 Issue (3): 302-308    DOI:
论文 Current Issue | Archive | Adv Search |
Preparation of Low-dimension Carbon Nanostructures via in-situ Catalytic Pyrolysis of Phenolic Resin
HU Qinghua1,2, WANG Xitang1, WANG Zhoufu1,  CHEN Hao2
1.The State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081
2.College of Chemistry and Environment Engineering, Jiujiang University, Jiujiang 332005
Cite this article: 

HU Qinghua WANG Xitang WANG Zhoufu CHEN Hao . Preparation of Low-dimension Carbon Nanostructures via in-situ Catalytic Pyrolysis of Phenolic Resin. Chin J Mater Res, 2012, 26(3): 302-308.

Download:  PDF(1075KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Different low-dimension carbon nanostructures, such as onion-like carbon, bamboolike carbon and carbon nanotubes, were prepared via in-situ catalytic pyrolysis of phenolic resin with Ni(NO3)2·6H2O as catalytic precursor, and characterized by X-ray diffraction, field-emission scanning electron microscope and transmission electron microscopy. The results show that carbon nanotubes with a narrow diameter distribution are more easily formed in a compact mass by a well dispersed Ni catalyst when the molar ratio of Ni(NO3)2·6H2O to phenol is under 0.01. When the ratio of Ni(NO3)2·6H2O to phenol is 0.04 above, Ni catalyst were prone to be aggregated, leading to a widened diameter distribution and sparse growth of carbon nanotube. When the ratio reached to 0.10, a more serious catalytic aggregation was observed and no carbon nanotube was prepared. The possible mechanisms were proposed for the formation of onion-like carbon, bamboo-like carbon and the carbon nanotube.
Key words:  inorganic non-metallic materials      low-dimension carbon nanostructures      catalytic pyrolysis      carbon nanotube      onion-like carbon      bamboo-like carbon     
Received:  25 October 2011     
ZTFLH: 

TB332

 
Fund: 

Supported by National Natural Science Foundation of China No.50872098 and the Innovation Team Project from Nature Science Foundation of Hubei Province No.2009CDA050.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I3/302

1 R.Taylor, G.J.Langley, H.W.Kroto, D.R.M.Walton, Formation of C60 by pyrolysis of naphthalene, Nature, 366(6457), 728(1993)

2 N.I.Alekseyev, G.A.Dyuzhev, Fullerene formation in an arc discharge, Carbon, 41(7), 1343(2003)

3 M.Zhao, H.Song, X.Chen, W.Lian, Large-scale synthesis of onion-like carbon nanoparticles by carbonization of phenolic resin, Acta Mateialia, 55(18), 6144(2007)

4 H.Abe, Nucleation of carbon onions and nanocapsules under ion implantation at high temperature, Diamond Related Materials, 10(3-7), 1201(2001)

5 Z.H.Wang, C.J.Choi, B.K.Kim, Z.D.Zhang, Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vaporcondensation process, Carbon, 41(9), 1751(2003)

6 Y.Lu, Z.Zhu, Z.Liu, Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene Carbon, 43(2), 369(2005)

7 L.Yang, P.W.May, L.Yin, J.A.Smith, K.N.Rosser, Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid, Diamond Related Materials, 16(4–7), 725(2007)

8 G.D.Nessim, M.Seita, K.P.O’Brien, S.A.Speakman, Dual formation of carpets of large carbon nanofibers and thin crystalline carbon nanotubes from the same catalystunderlayer system, Carbon, 48(15), 4519(2010)

9 P.Serp, M.Corrias, P.Kalck, Carbon nanotubes and nanofibers in catalysis, Applied Catalysis A:General, 253(2), 337(2003)

10 W.Wu, Z.Liu, L.A.Jauregui, Q.Yu, R.Pillai, H.Cao, J.Bao, Y.P.Chen, S.Pei, Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing, Sensor and Actuators B:Chemical, 150(1), 296(2010)

11 M.Laskoski, T.M.Keller, S.B.Qadri, Direct conversion of highly aromatic phthalonitrile thermosetting resins into carbon nanotube containing solids, Polymer, 48(26), 7484(2007)

12 N.Kasahara, S.Shiraishi, A.Oya, Heterogeneous graphitization of thin carbon fiber derived from phenolformaldehyde resin, Carbon, 41(8), 1654(2003)

13 K.Okabe, S.Shiraishi, A.Oya, Mechanism of heterogeneous graphitization observed in phenolic resin-derived thin carbon fibers heated at 3000 s, Carbon, 42(3), 667(2004)

14 C.L.Liu, W.S.Dong, J.R.Song, L.Liu, Evolution of microstructure and properties of phenolic fibers during carbonization, Materials Science and Engineering: A, 459(1–2), 347(2007)

15 XIAO Shaoyi, LIU Hongbo, CHEN Yangfei, HE Yuede, HU Congcong, Carbon(Tan Su), (2), 3(2010)

(肖绍懿, 刘洪波, 陈鸯飞, 何月德, 胡聪聪, 酚醛炭基C/C复合滑板材料的催化石墨化及其性能研究, 炭素, (2), 3(2010))

16 LI Yawei, XIE Ting, ZHAO Lei, Structure and oxidation resistance of pyrolytic carbon from phenol resin-doped Ni2O3 powder, Journal of Wuhan University Science and Technology, 34(1), 18(2011)

(李亚伟, 谢 婷, 赵  雷, 氧化镍掺杂酚醛树脂热解炭的结构及抗氧化性研究, 武汉科技大学学报,  34(1), 18(2011))

17 I.Stamatin, A.Morozan, A.Dumitru, V.Ciupina, G.Prodan, J.Niewolski, H.Figiel, The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins, Physica E:Low-dimensional Systems and Nanostructures, 37(1-2), 44(2007)

18 M.Zhao, H.Song, Catalytic graphitization of phenolic resin, Journal of Materials Science & Technology, 27(3), 266(2011)

19 M.Houll´e, A.Deneuve, J.Amadou, D.B´egin, C.Pham-Huu, Mechanical enhancement of C/C composites via the formation of a machinable carbon nanofiber interphase, Carbon, 46(1),76(2008)

20 P.Xiao, X.Lu, Y.Liu, L.He, Effect of in situ grown carbon nanotubes on the structure and mechanical properties of unidirectional carbon/carbon composites, Materials Science and Engineering A, 528(7-8), 3056(2011)

21 C.A.Lytle, W.Bertsch, M.McKinley, Determination of novolac resin thermal decomposition products by pyrolysisgas chromatography-mass spectrometry, Journal of Analytical and Applied Pyrolysis, 45(2), 121(1998)

22 W.Brockner, C.Ehrhardt, M.Gjikaj, Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O, in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O, Thermochimica Acta, 456(1), 64(2007)

23 DENG Xiaoyan, ZHANG Zhikun, Mechanism and non-isothermal kinetics of thermal decomposition of Ni(NO3)2·6H2O, Journal of Qingdao University Science and Technology (Natural Science Edition), 27(1), 24(2006)

(邓晓燕, 张志焜, Ni(NO3)2·6H2O的热分解机理及非等温动力学参数, 青岛科技大学学报(自然科学版),  27(1), 24(2006))

24 J.Michalowski, D.Mikociak, K.J.Konsztowicz, S.Blazewicz, Thermal conductivity of 2D C-C composites with pyrolytic and glass-like carbon matrices, Journal of Nuclear Materials, 393(1), 47(2009)

25 A.Gorbunov, O.Jost, W.Pompe, A.Graff, Solid–liquid–solid growth mechanism of single-wall carbon nanotubes, Carbon, 40(1), 113(2002)

26 E.F.Kukovitsky, S.G.L’vov, N.A.Sainov, VLS-growth of carbon nanotubes from the vapor, Chemical Physics Letters, 317(1-2), 65(2000)

27 A.Gorbunov, O.Jost, W.Pompe, A.Graff. Role of the catalyst particle size in the synthesis of single-wall carbon nanotubes. Applied Surface Science, 197-198, 563(2002)

28 O.P.Krivoruchko, V.I.Zaikovskii, A new phenomenon involving the formation of liquid mobile metal–carbon particles in the low-temperature catalytic graphitisation of amorphous carbon by metallic Fe, Co and Ni, Mendeleev Communications, 8(3), 97(1998)

29 S.F.Lee, Y.P.Chang, L.Y.Lee, Effects of annealing Ni catalyst in nitrogen-containing gases on the surface morphology and field-emission properties of thermal chemical vapor deposited carbon nanotubes, New Carbon Materials, 23(4), 302(2008)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] ZHAO Chaofeng, ZHENG Xiaoyan, LI Kairui, JIA Shikui, ZHANG Ming, LI Yesheng, WU Ziping. Surface Metallization of Carbon Nanotube Film for Flexible Lithium-ion Batteries with High Output Current[J]. 材料研究学报, 2022, 36(5): 373-380.
No Suggested Reading articles found!