Please wait a minute...
Chin J Mater Res  2012, Vol. 26 Issue (2): 155-161    DOI:
论文 Current Issue | Archive | Adv Search |
Preparation and Properties of N and Fe Codoped Nano TiO2
SUN Tao, FAN Jun, HU Xiaoyun, LIU Enzhou, HE Qi,  HOU Wenqian, WU Feng
1.School of Chemical Engineering, Northwest University, Xi’an 710069
2.Department of Physics, Northwest University, Xi’an 710069
Cite this article: 

SUN Tao FAN Jun HU Xiaoyun LIU Enzhou HE Qi HOU Wenqian WU Feng. Preparation and Properties of N and Fe Codoped Nano TiO2. Chin J Mater Res, 2012, 26(2): 155-161.

Download:  PDF(1258KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Pure nano TiO2, N doped, Fe doped, and N and Fe co-doped nano TiO2 were prepared by alcohol-thermal method using butyl titanate as Ti sources. Its crystal structure, surface morphology, specific surface area, UV-Vis. absorption, photoluminescence and photo-catalytic activities of hydrogen evolution were characterized. The results show that all the TiO2 samples own a pure anatase phase with the average diameter of about 20 nm after calcinations at 500 , and distribute uniformly as the prismatic type of particles. N and Fe co-doped TiO2 exhibits higher visible light activity, the optimal doping amount of N and Fe is 5.0% and 2.0% respectively, which can make the absorption wavelength of TiO2 shift to 510nm compared with that of pure TiO2. N and Fe co-doping can generate the impurity levels in the
band gap of TiO2, leading to a good visible light response. The recombination of photo-excited electrons and holes is restrained by N and Fe co-doping. N and Fe copdoped TiO2 displays higher catalytic activity under visible light irradiation (λ >400 nm), the hydrogen evolution rate is 299.2 μmol·g−1·h−1 by water splitting.
Key words:  inorganic non-metallic materials      nano TiO2      N and Fe co-doping      alcohol-thermal method      visible light absorption      hydrogen evolution     
Received:  15 August 2011     
ZTFLH: 

TB321

 
  O649

 
Fund: 

Supported by the National Natural Science Foundation of China No.20876125, the Research Fund for the Doctoral Program of Higher Education No.20096101110013, the Natural Science Foundation of Shannxi Province No.2010JZ002, and Northwest University Graduate Cross-discipline Funds No.09YJC24, 09YJC27.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I2/155

1 K.Honda, A.Fujishima, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238, 37(1972)

2 M.Anpo, M.Takeuchi. The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation, J. Catal., 216, 505(2003)

3 J.Fan, E.Z.Liu, L.Tian, X.Y.Hu, Q.He, T.Sun, Synergistic Effect of N and Ni+2 on Nanotitania in Photocatalytic Reduction of CO2, J. Environ. Eng- ASCE., 137, 171(2011)

4 G.D.Yang, Z.Jiang, H.H.Shi, M.O.Jones, T.C.Xiao, P.P.Edwards, Z.F.Yan, Study on the Photocatalysis of FS Codoped TiO2 Prepared Using Solvothermal Method, Appl. Catal. B: Environ., 96, 458(2010)

5 S.Z.Hu, A.J.Wang, X.Li, H.Lowe, Hydrothermal Synthesis of Well-dispersed Ultrafine N-Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity under Visible Light. J. Phys. Chem. Solids., 71, 156(2010)

6 H.Xu, L.Z.Zhang, Selective Nonaqueous Synthesis of C-Clcodoped TiO2 with Visible-light Photocatalytic Activity. J. Phys. Chem. C. 114, 11534(2010)

7 R.G.Aditi, P.N.Sajo, B.F.Julio, Selective Synthesis of Ndoped Mesoporous TiO2 Phases Having Enhanced Photocatalytic Activity, Micropor. Mesopor. Mat., 87, 103(2005)

8 LIU Guocong, DONG Hui, LIU Shaoyou, Citric Acidcatalyzed Synrhesis of N-doped Mesoporous TiO2 and Their Photocatalytical Properties, Chinese Journal of Materials Research, 24(6), 631(2010)

(刘国聪, 董辉, 刘少友, N掺杂介孔TiO2柠檬酸催化合成及其光催化性能研究, 材料研究学报, 24(6), 631(2010))

9 HUANG Cuiying, ZHANG Lancui, LI Xiaohui, Effect of Rare Earth Ion Doping on the Photocatalytic Activity of TiO2 for Hydrogen Evolution, Chinese Journal of Catalysis, 29(2), 163(2008)

(黄翠英, 张澜萃, 李晓辉, 稀土离子掺杂对纳米TiO2光催化制氢活性的影响, 催化学报, 29(2), 163(2008))

10 P.L.Zhang, S.Yin, V.Petrykin, M.Kakinana, T.Sato, Preparation of High Performance Fibrous Titania Photocatalysts by the Solvothermal Reaction of Protonated form of Tetratitanate, J. Mol. Catal. A: Chem., 309, 50(2009)

11 QU Xiaoguang, SONG Yunting, LIU Qing, CAO Wenbin, Preparation of Nanocrystalline Cr-doped TiO2 Powders and Their Photocatalytic Properties under Visible Light Irradiation, Chinese Journal of Materials Research, 24 (2), 144(2010)

(曲晓光, 宋云婷, 刘 青, 曹文斌, Cr掺杂纳米TiO2的制备及其可见光催化性能, 材料研究学报, 24(2), 144(2010))

12 Z.J.Li, W.Z.Shen, W.S.He, X.T.Zu, Effect of Fe-doped TiO2 Nanoparticle Derived from Modified Hydrothermal Process on the Photocatalytic Degradation Performance on Methylene Blue, J. Hazard. Mater., 155, 590(2008)

13 JING Liqiang, FU Honggang, WANG Dejun, WEI Xiao, SUN Jiazhong, Surface Photoinduced Charge Separation and Photocatalytic Activity of Sn Doped TiO2 Nanoparticles, Acta Phys. Chim. Sin., 21(4), 378(2005)

(井立强, 付宏刚, 王德军, 魏  霄, 孙家钟, 掺Sn的纳米TiO2表面光致电荷分离及光催化活性, 物理化学学报, 21(4), 378(2005))

14 J.G.Yu, H.G.Yu, C.H.Ao, S.C.Lee, J.C.Yu, W.K.Ho, Preparation, Characterization and Photocatalytic Activity of in Situ Fe–doped TiO2 Thin Films, Thin Solid Films, 496, 273(2006)

15 V.Stengl, S.Bakardjieva, N.Murafa, V.Houskova, K.Lang, Visible-light Photocatalytic Activity of TiO2/ZnS Nanocomposites Prepared by Homogeneous Hydrolysis, Micropor. Mesopor. Mat., 110, 370(2007)

16 R.S.Mane, W.J.Lee, H.M.Pathan, S.H.Han, Nanocrystalline TiO2/ZnO Thin Films: Fabrication and Application to Dye- sensitized Solar Cells. J. Phys. Chem. B. 109, 15049(2005)

17 K.Das, S.K.De, Optical Properties of the Type-II Core Shell TiO2 and CdS Nanorods for Photovoltaic Applications. J. Phys. Chem. C., 113, 3494(2009)

18 A.Patsoura, D.I.Kondarides, X.E.Verykios, Enhancement of Photoinduced Hydrogen Production from Irradiated Pt/TiO2 Suspensions with Simultaneous Degradation of Azo-dyes, Appl. Catal. B: Environ., 64, 171(2006)

19 W.Macyk, G.B, H.Kisch, Photoelectrochemical Properties of Platinum(IV) Chloride Surface Modified TiO2, Photochem. Photobiol. Sci., 2, 322(2003)

20 Y.Lee, J.Chae, M.Kang, Comparison of the Photovoltaic Efficiency on DSSC for Nanometer Sized TiO2 Using a Conventional Sol-gel and Solvothermal Methods, J. Ind. Eng. Chem., 16, 609(2010)

21 S.S.Mao, X.B.Chen, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev., 107, 2891(2007)

22 L.Pan, J.J.Zou, X.W.Zhang, L.Wang, Photoisomerization of Norbornadiene to Quadricyclane Using Transition Metal Doped TiO2, Ind. Eng. Chem. Res., 49, 8526(2010)

23 ZHAO Zongyan, LIU Qingju, ZHANG Jin, ZHU Zhongqi, First-principles Study of 3d Transition Metal-doped Anatas, Acta Phys. Sin-Ch Ed. 56(11), 6592(2007)

(赵宗彦, 柳清菊, 张 瑾, 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究, 物理学报, 56(11), 6592(2007))

24 M.Kang, Synthesis of Fe/TiO2 Photocatalyst with Nanometer Size by Solvothermal Method and the Effect of H2O Addition on Structural Stability and Photodecomposition of Methanol. J. Mol. Catal. A: Chem., 197, 173(2003)

25 M.Seyler, K.Stoewe, W.F.Maier, New Hydrogenproducing Photocatalysts-A Combinatorial Search, Appl. Catal. B: Environ., 76, 146(2007)

26 E.Finazzi, C.D.Valentin, A.Selloni, G.Pacchioni, First Principles Study of Nitrogen Doping at the Anatase TiO2 (101) Surface, J. Phys. Chem. C., 111, 9275(2007)

27 Y.X.Zhang, G.H.Li, Y.X.Jin, Y.Zhang, J.Zhang, L.D.Zhang, Hydrothermal Synthesis and Photoluminescence of TiO2 Nanowires, Chem. Phys. Lett., 365, 300(2002)

28 B.Naik, K.M.Parida, Solar Light Active Photodegradation of Phenol over a FexTi1−xO2−yNy Nanophotocatalyst, Ind. Eng. Chem. Res., 49, 8339(2010)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!