Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (6): 607-612    DOI:
论文 Current Issue | Archive | Adv Search |
Several W-type Barium Ferrites with Different Me2 : Preparation and the Electromagnetic Properties
WU Yanfei, HUANG Ying, ZHANG Yinling, NIU Lei
Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710129
Cite this article: 

WU Yanfei HUANG Ying ZHANG Yinling NIU Lei. Several W-type Barium Ferrites with Different Me2 : Preparation and the Electromagnetic Properties. Chin J Mater Res, 2011, 25(6): 607-612.

Download:  PDF(1400KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The W–type ferrites, BaMe2 Fe16O27, were prepared by sol–gel method. The performances of the ferrites were improved by changing the Me2(Co2, CoNi, CoZn). The structures, morphologies, magnetic properties and microwave absorption properties of the samples were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and Vector network analyzer. According the SEM observations, it is found that all the ferrites showed a hexagonal platelet–like shape. The XRD results indicated that all the samples were W-type ferrite. The synthesized samples exhibited paramagnetism and strong magnetism. Besides, the composite, which was blend with paraffin BaCoZnFe16O27/paraffin, has a better microwave absorbing property than the other
ferrites. Moreover, the reflection loss of one–layer absorber with the BaCoZnFe16O27 sample was calculated. The band width (with respect to −10 dB reflection loss) is 5.42 GHz at a matching thickness of 3.50 mm and the maximal reflection loss is −16.23 dB.
Key words:  inorganic non-metallic materials      W–type barium ferrite      microwave absorbing property      sol–gel method      electromagnetic properties     
Received:  22 March 2011     
ZTFLH: 

TM277

 
Fund: 

Supported by Aerospace Science and Technology Innovation Foundation No.N9XT0001 and Space SupportTechnology Foundation No.N8XW0002.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I6/607

1 K.Kamala Bharathi, G.Markandeyulu, C.V.Ramana, Structural, magnetic, electrical, and magnetoelectric properties of Sm– and Ho–substituted nickel ferrites, Journal of Physical of Chemistry C, 115, 554(2011)

2 V.Caignaert, A.M.Abakumov, A new mixed-valence ferrite with a cubic structure, YBaFe4O7: spin-glass-like behavior, Chemistry of Materials, 21, 1116(2009)

3 L´aszl´oTrif, Gyula Tolnai, Istv´an Saj´o, Preparation and characterization of hexagonal W–type barium ferrite nanoparticles, Progress in Colloid and Polymer Science, 135, 38(2008)

4 P.S.Sawadh, D.K.Kulkarni, Structural and magnetic properties of CaMg2Fe16O27 , Bulletin of Materials Science, 24, 47(2001)

5 XU Jijing, ZOU Haifeng, LI Hongying, Influence of Nd3+ substitution on the microstructure and electromagnetic properties of barium W–type hexaferrite, Journal of Alloys and Compounds, 490, 552(2010)

6 HUANG Xiaogu, ZHANG Jing, WANG Hongzhou, Er3+–substituted W–type barium ferrite: preparation and electromagnetic properties, Journal of Rare Earths, 28, 940(2010)

7 WANG Lixi, SONG Jie, ZHANG Qitu, The microwave magnetic performance of Sm3+ doped BaCo2Fe16O27, Journal of Alloys and Compounds, 481, 863(2009)

8 A.M.Abo El Ata, M.K.El Nimr, D.El Kony, Dielectric and magnetic permeability behavior of BaCo2−xNixFe16O27 W–type hexaferrites, Journal of Magnetism and Magnetic Materials, 204, 36(1999)

9 A.M.Abo El Ata, M.K.El Nimr, D.El Kony, Conduction mechanism of BaCo2−xNixFe16O27, Journal of Magnetism and Magnetic Materials, 202, 397(1999)

10 M.A.Ahmeda, N.Okasha, R.M.Kershi, Could Mg content control the conduction mechanism of Ba Co Zn–W–type hexagonal ferrites, Journal of Magnetism and Magnetic Materials, 321, 3967(2009)

11 LI Z.W, WU Y.P, LIN G.O, CHEN Lifeng, Static and dynamic magnetic properties of CoZn substituted Z-type barium ferrite Ba3CoxZn2−xFe24O41composites, Journal of Magnetism and Magnetic Materials, 310, 145(2007)

12 LI Hongying, ZOU Haifeng, YUAN Lanying, Preparation and characterization of W–type hexaferrite doped with La3+, Journal of Rare Earths, 25, 590(2007)

13 Hsing-I Hsiang, Chi-Shiung Hsi, Tin-Chin Lee, Effects of glass additions on 3Ba0.5Sr0.5O2CoO·12Fe2O3 for highfrequency applications, Journal of Magnetism and Magnetic Materials, 268, 186(2004)

14 SHEN Guozhu, XU Zheng , LI Yi, Absorbing properties and structural design of microwave absorbers based on W– type La–doped ferrite and carbon fiber composites, Journal of Magnetism and Magnetic Materials, 301, 325(2006)

15 DU Lei, DU Yun Chen, LI You, Surfactant-assisted solvothermal synthesis of Ba(CoTi)xFe12−2xO19 nanoparticles and enhancement in microwave absorption properties of polyaniline, Journal of Physical of Chemistry C, 114, 19600(2010)

16 Faiza Aena, Shahida B.Niazib, M.U.Islama, Effect of holmium on the magnetic and electrical properties of barium based w–type hexagonal ferrites, Ceramics International, 37, 1725(2011)

17 XU Ping, HAN Xijiang, WANG Chao, Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole, Journal of Physical of Chemistry B, 112, 2775(2008)

18 LI Huifeng, HUANG Yunhua, SUN Genban, Directed growth and microwave absorption property of crossed ZnO netlike micro-/nanostructures, Journal of Physical of Chemistry C, 114, 10088(2010)

19 ZHANG Yougang, Magnetic Materials, 1, (Chengdu, Chengdu telecom engineering college press, 1981) p.224

(张友刚,  磁性材料,  (成都, 成都电讯工程学院出版社, 1981) p.224)

20 S.M.Abbas, A.K.Dixit, R.Chatterjee, Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites, Journal of Magnetism and Magnetic Materials, 309, 20(2007)
 
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!