Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (6): 602-606    DOI:
论文 Current Issue | Archive | Adv Search |
ZrTiCoAl Bulk Metallic Glasses and Their Mechanical Properties
GAO Huili, SHEN Yong, HE Qiang, XU Jian
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016
Cite this article: 

GAO Huili SHEN Yong HE Qiang XU Jian. ZrTiCoAl Bulk Metallic Glasses and Their Mechanical Properties. Chin J Mater Res, 2011, 25(6): 602-606.

Download:  PDF(930KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Using “3D–pinpointing approach”, Zr55Ti2Co28Al15 alloy with high glass–forming ability (GFA) is discovered in quaternary Zr–Ti–Co–Al system, whose critical diameter for BMG formation reaches 8 mm. In comparison with Ti–free ternary Zr56Co28Al16 BMG, glass transition temperature (Tg) of Zr55Ti2Co28Al15 BMG decreases by about 9 K. Nevertheless, no significant difference is observed in the elastic constants such as Young’s modulus, shear modulus, bulk modulus and Poisson’s ratio. Compressive fracture strength of Zr55Ti2Co28Al15 BMG is around 1990 MPa, while its fracture strength in tension is about 1690 MPa.
Key words:  metallic glass      mechanical properties      zirconium alloys      glass–transition temperature     
Received:  24 May 2011     
ZTFLH: 

TB321

 
Fund: 

Supported by National Basic Research Program of China (973 Program) No.2007CB613906.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I6/602

1 W.L.Johnson, Bulk glass–forming metallic alloys: Science and technology, MRS Bulletin, 24(10), 42(1999)

2 A.Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48(1), 279(2000)

3 J.Xu, U.Ramamurty, E.Ma, On the fracture toughness of bulk metallic glasses, Journal of Metals, 62(4), 10(2010)

4 J.Schroers, G.Kumar, T.M.Hodges, S.Chan, T.R.Kyriakides, Bulk metallic glasses for biomedical aplications, Journal of Metals, 61(9), 21(2009)

5 M.D.Demetriou, A.Wiest, D.C.Hofmann, W.L.Johnson, B.Han, N.Wolfson, G. Wang, P.K. Liaw, Amorphous metal for hard–tissue prosthsis, Journal of Metals, 62(2), 83(2010)

6 T.Wada, F.X.Qin, X.M.Wang, M.Yoshimura, A.Inoue, N.Sugiyama, R.Ito, N. Matsushita, Formation and bioactivation of Zr–Al–Co bulk metallic glasses, J. Mater. Res., 24(9), 2941(2009)

7 Q.He, Y.Q.Cheng, E.Ma, J.Xu, Locating bulk metallic glasses with high fracture toughness: Chemical effects and composition optimization, Acta Mater., 59(1), 202(2011)

8 H.Ma, L.L.Shi, J.Xu, Y.Li, E.Ma, Discovering inch–diameter metallic glasses in three–dimensional composition space, Appl. Phys. Lett., 87(18), 181915(2005)

9 L.Zhang, Y.Q.Cheng, A.J.Cao, J.Xu, E.Ma, Bulk metallic glasses with large plasticity: Composition design from the structural perspective, Acta Mater., 57(4), 1154(2009)

10 J.J.Lewandowski, W.H.Wang, A.L.Greer, Intrinsic plasticity or brittleness of metallic glasses, Phil. Mag. Lett., 85(2), 77(2005)

11 J.Schroers, W.L.Johnson, Ductile bulk metallic glass, Phys. Rev. Lett., 93(25), 255506(2004)

12 Y.Q.Cheng, A.J.Cao, E.Ma, Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition, Acta Mater., 57(11), 3253(2009)

13 H.Bei, Z.P.Lu, S.Shim, G.Chen, E.P.George, Speciemen size effects on Zr–based bulk metallic glasses investigated by uniaxial compression and spherical nanoindentation, Metall. Mater. Trans. A, 41(7), 1735(2010)

14 Z.F.Zhang, J.Eckert, L.Shultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta Mater., 51(4), 1167(2001)

15 Z.Han, Y.Li, Cooperative shear and catastrophic fracture of bulk metallic glasses from a shear–band instability perspective, J. Mater. Res., 24(12), 3620(2009)

16 Y.Q.Cheng, Z.Han, Y.Li, E.Ma, Cold versus hot shear banding in bulk metallic glass, Phys. Rev. B, 80(13), 134115(2009)

17 S.X.Song, H.Bei, J.Wadsworth, T.G.Nieh, Flow serration in a Zr–based bulk metallic glass in compression at low strain rates, Intermetallics, 16(6), 813(2008)

18 C.A.Schuh, T.C.Hufnagel, U.Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater., 55(12), 4067(2007)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[5] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[6] ZHU Xuedong, ZHANG Shuang, ZOU Cunlei, LIU Lingen, ZHU Zhihao, WAN Peng, DONG Chuang. Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior[J]. 材料研究学报, 2023, 37(4): 281-290.
[7] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[8] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[9] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[11] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[12] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] YU Cong, CHEN Leping, JIANG Hongxiang, ZHOU Quan, YANG Chenggang. Effect of Deep Cryogenic-Aging Treatment on Microstructure and Mechanical Properties of 7075 Al-alloy[J]. 材料研究学报, 2023, 37(2): 120-128.
[14] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[15] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
No Suggested Reading articles found!