Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (4): 389-394    DOI:
论文 Current Issue | Archive | Adv Search |
First-principles Calculations for SrTiO3 Films Growth on GaN(0001) Surfaces
HUANG Ping1,2, YANG Chun1,3,  JIE Weiwei1,2,
1.Visual computing and virtual reality key laboratory of Sichuan province, Sichuan Normal University, Chengdu 610068
2.College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610068
3.State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chendu 610054
Cite this article: 

HUANG Ping YANG Chun JIE Weiwei. First-principles Calculations for SrTiO3 Films Growth on GaN(0001) Surfaces. Chin J Mater Res, 2010, 24(4): 389-394.

Download:  PDF(771KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

10?#20?#30?#40? and 50? in-plane rotation models of SrTiO3 (STO) films on GaN(0001)  substrates with different interface structure were designed. The total energies of different epitaxial models of STO/GaN magnetoelectric films were theoretically explored by the plane wave ultra soft pseudo-potential model based on density functional theory. The simulated results show that STO films grown on GaN (0001) substrates with the ideal (with the lowest lattice mismatch) epitaxial relation of [1–10]SrTiO3//[10–10]GaN have the highest energy, indicating this unstable configuration. The total energies become lower quickly with the rotation of STO[1–10] along GaN[10–10] direction, showing the lowest energy at the 30? rotation, which are the most stable structures. The epitaxial orientation relations are [1–10]SrTiO3//[11–20] GaN by this 30? rotation in the in-plane direction of the STO epilayer on GaN(0001) substrates, which are in agreement with experimental observation. Calculation results also reveal that the STO/GaN magnetelectric film is favor in forming STO-Ti-GaN interface structure.

Key words:  surface and interface in the materials        rotation models        DFT        STO/GaN magnetoelectric films     
Received:  25 March 2010     
ZTFLH: 

O484

 
Fund: 

Supported by National Natural Science Foundation of China No.50942025 and the Open Subject of State Key Laboratory of Electronic Thin Films and Integrated Devices No.KFJJ200811.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I4/389

[1] C.J.Youn, T.S.Jeong , M.S.Han, J.W.Yang, K.Y.Lim, and H.W.Yu, Influence of various activation temperatures on the optical degradation of Mg doped InGaN/GaN MQW blue LEDs, J Cryst.Growth, 250, 331(2003) [2] T.U.shii, Y.Tazoh, and S.Miyazawa, LiGaO2 Single Crystal for a substrate of Hexagonal GaN thin films, Appl. Phys. Lett, 67, 1868(1995) [3] P.J.Hansen, L.Shen, Y.Wu, A.Stonas, Y.Terao, S.Heikman, D.Buttari, T.R.Jaylor, S.P.DenBaars, U.K.Mishra, R.A.York, and J.S.Speck, AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium titanate, J.Vac.Sci.Technol.B., 22(5), 2479(2004) [4] S.Y.Yang, Q.Zhan, P.L.Yang, M.P.Cruz, Y.H.Chu, R.Ramesh, Y.R.Wu, J.Singh, W.Tian, and D.G.Schlom, Capacitance-voltage characteristics of BiFeO3/SrTiO3/GaN heteroepitaxial structures, Appl. Phys.Lett., 91, 022909(2007) [5] W.Tian, V.Vaithyanathan, D.G.Schlom, Q.Zhan, S.Y.Yang, Y.H.Chu, and R.Ramesh, Epitaxial integration of (0001) BiFeO3 with (0001) GaN, Appl. Phys.Lett., 90(17), 172908(2007) [6]C.R.Cho, J.Y.Hwang, J.P.Kim, S.Y.Jeong, M.S.Jang, W.J.Lee, and D.H.Kim, Ferromagnetism of Heteroepitaxial Zn1-xCuxO films Grown on n-GaN Substrates, Jpn. J.Appl.Phys., 43, L1383(2004) [7]T.Sakai, T.Watanabr, H.Funaknbo, K.Saito, and M.Osada, Effect of La substitution on Electrical Properties of Hihgly Oriented Bi4Ti3O12 Films Prepurced by Metal organic Chemical Vapor Deposition, Jpn. J.Appl.Phys., 42, 166(2003) [8] A.Posadas, J.-B.Yau, C.H.Ahn, J.Han, S.Gariglio, K.Johnson, K.M.Rabe, and J.B.Neaton, Epitaxial Growth of Multiferroic YMnO3 on GaN, Applied Physics Letters, 87, 171915 (2005) [9] W. P. Li, R. Zhang, Y. G. Zhou, J. Yin, H. M. Bu, Z. Y. Luo, B. Shen, Y. Shi, R. L. Jiang, S. L. Gu, Z. G. Liu, Y. D. Zheng, and Z. C. Huang, Studies of metal-ferroelectric-GaN structures, Applied Physics Letters, 75(16), 2416(1999) [10] F. Wang, V.Fuflyigin, and A. Osinsky, Electro-optic properties of oxide ferroelectrics grown on GaN/sapphire , J.Appl .Phys. 88, 1701(2000) [11]W.B.Luo, J.Zhu, H.Chen, X.P.Wang, Y.Zhang, and Y,R.Li, Improved crystalline properties of laser molecular beam epitaxy grown SrTiO3 by rutile TiO2 layer on hexagonal GaN, J.Appl .Phys., 106, 104120(2009) [12] J.Ohta, H.Fujioka, M.Kawano, and M.Oshima, Structural Properties of Group Ⅲ Nitrides Grown on SrTiO3(111) Substrates by Pulsed Laser Deposition, Phys. Stat. Sol C 0(1), 554(2002) [13] M.Bernasconi, G.LChiarotti, and E.Tosatti, Ab-initio calculations of structural and electronic properties of gallium solid-state phases, Phys. Rev. B., 1995, 52, 9988(1995) [14] B.Hammer, L. B.Hansen, and J. K.Norskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B., 59, 7413(1999) [15] M.-H.Tsai, O.F.Sankey, K.E.Schmidt, and T.S.T.Tsong, Electronic structures of plar and nonplar GaN surfaces, Materials Science and Engineering B88, 40(2002) [16] A.L.Rosa and J.Neugebauer, First-principles calculations of the structural and electronic properties of clean GaN(0001) surfaces, Phys.Rev.B, 73, 205346(2006) [17] Q.Sun, A.Selloni, T.H.Myers and W.A.Doolittle, Oxygen adsorption and incorporation at irradiated GaN(0001) and GaN(000-1) surfaces, Phys.Rev.B, 74, 195317(2006) [18] K.Rapcewicz, M.B.Nardelli and J.Bemholc, Theory of surface morphplogy of wurtzite GaN(0001) surfaces, Phy.Rev.B, 56, R12725(1997) [19] J.P.Perdew, J.A.Chevary, S.H.Vosko, K.A.Jackson, M.R.Pederson, D.J.Singh, and C.Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phy.Rew.B, 46, 6671(1992) [20] Segall M D, Lindan Philip J D, Probert M J, Pickard C.J, Hasnip P J, Clark S J, and Payne M C, First-principles simulation: Ideals, illustrations and the CASTEP code, J.Phys.Condens.Matter, 14(11), 2717 (2002) [21] Wang Pei-Yi, Yang Chun, Li Lai-Cai, and Li Yan-Rong, Theoretical study on the reaction mechanism Sr,Ti,O in early growth of SrTiO3 thin films, Acta Phys.in., 57(4), 2340 (王佩怡,杨春, 李来才, 李言荣, SrTiO3薄膜生长初期Sr、Ti、O原子分子反应机理的理论研究, 物理学报,57(4), 2340(2008))
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[7] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[8] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[9] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[10] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[11] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[12] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[13] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[14] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[15] XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. 材料研究学报, 2021, 35(11): 820-826.
No Suggested Reading articles found!