Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (4): 358-362    DOI:
论文 Current Issue | Archive | Adv Search |
The Influence of Selenization Temperature on the Properties of CuInGaSe2 Thin Film
LI Chunei, ZHUANG, Daming, ZHANG Gong, LUAN Hexin, LIU Jiang, SONG Jun
Department of Mechanical Engineering, Tsinghua University, Beijing 100084
Cite this article: 

LI Chunei ZHUANG Daming ZHANG Gong LUAN Hexin LIU Jiang SONG Jun. The Influence of Selenization Temperature on the Properties of CuInGaSe2 Thin Film. Chin J Mater Res, 2010, 24(4): 358-362.

Download:  PDF(904KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As the absorber layer in CISe-based solar cell CIGSe thin film was prepared by precursorselenization method. The influences of selenization temperature on compositions, morphologies, phase structures and electronic properties of CIGSe thin films were investigated. The compositions, morphologies and phase structures of CIGSe by means of XRF, SEM, XRD and Raman, respectively were analyzed. Based on Hall Effect the resistivities and minority carrier mobilities of CIGSe were tested. The results show that there are no differences in morphologies and compositions of CIGSe films prepared at 520–560oC. Ordered defect compound (ODC) phase and Cu–Se phase increase with the increasing of selenization temperatures, which increases the concentrations of defect in CIGSes and causes the deterioration of electronic properties of thin film.

Key words:  inorganic non-metallic materials        solar cell        CuInGaSe2        precursor-selenization        selenization temperature        ODC phase        Cu-Se phase     
Received:  07 April 2010     
ZTFLH: 

TM615

 
Fund: 

Supported by National High Technology Research and Development Program of China No.2007AA05Z461.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I4/358

[1] Antonio Luque, Steven Hegedus, Handbook of Photovoltaic Science and Engineering ( England, John Wiley & Sons Ltd, 2003) p.566~570 [2] J. S. Park, Z. Dong, et al, CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction, Journal of applied physics, 87(8),3683-3690(2000) [3] R. Pal, K. K. Chattopadhyay, et a, Effect of etching on the surface morphology and grain boundary parameters of Cu-rich CuInSe2 films , Thin solid films, 254, 111-115(1995) [4] R. Kaigawa, T. Uesugi, Instantaneous preparation of CuInSe2 films from elemental In, Cu, Se particles precursor films in a non-vacuum process, Thin solid films, 517, 2184-2186(2009) [5] Shen Jianyun, W.K. Kim, Thermodynamic description of the ternary compounds in the Cu-In-Se system , Rare Metals, 25(5), 481(2006) [6] S. Niki, P. J. Fons, et al, Effects of the surface Cu2-xSe phase on the growth and properties of CuInSe2 films, Applied physics letters, 74(11), 1630-1632(1999) [7] Liu Fang-fang, Sun Yun, Zhang Li et al, Study on the Diode Characteristics of Cu(In,Ga)Se2 Thin Film Solar Cells, Journal of Synthetic Crystals,38(2), 455-459(2009) (刘芳芳,孙云,张力 等,Cu(In,Ga)Se2薄膜太阳电池二极管特性的研究,人工晶体学报,38(2), 455-459(2009)) [8] T. Schlenker, M. Luis Valero, et al, Grain growth studies of thin Cu(In, Ga)Se2 films, Journal of Crystal Growth, 264, 178–183(2004) [9] V. Alberts, Band gap optimization in Cu(In1-xGax)(Se1-ySy)2 by controlled Ga and S incorporation during reaction of Cu-(In,Ga) intermetallics in H2Se and H2S [J].thin solid films, 517, 2115-2120(2009) [10] Michael Oertel, Thomas Hahn, et al, CuInSe2 solar cells by sequential absorber layer processing, Phys. Status Solidi, 6(5), 1253–1256(2009) [11] Neelkanth G. Dhere, Vivek S. Gade, et al, Development of CIGS2 thin film solar cells,. Materials Science and Engineering B, 116, 303-309(2005) [12] Marika Edoff, CIGS thin film solar cells, (Uppsala University, 2005) [13] Wolfram Witte, Robert Kniese, Michael Powalla, Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents, Thin solid films, 517, 867-869(2008) [14] Philip Jackson, Roland Würz, et al, High Quality Baseline for High Efficiency Cu(In1-x,Gax)Se2 Solar Cells, Prog. Photovolt. Res. Appl.,15, 507–519(2007) [15] V. Alberts, M. Klenk, et al, Phase separation and compositional changes in two-stage ,Thin Solid Film,387,44-46(2001) [16] E.P. Zaretskaya, V.F. Gremenok, et al, Raman spectroscopy of CuInSe2 thin films prepared by selenization,Journal of Physics and Chemistry of Solids, 64, 1989–1993(2003) [17] R Schwarcz, M A Kanehisa, et al, Evolution of Raman spectra as a function of layer thickness in ultra-thin InSe films , J. Phys.: Condens. Matter, 14, 967–973(2002) [18] Xu Chuanming, Xu Xiaoliang, Xu Jun et al, Effect of Structure on Raman Spectra in Cu(In,Ga)3Se5 Thin Films, Chinese Journal of Semiconductors, 25(11), 1423-1428(2004) (徐传明,许小亮,徐军 等,Cu(In,Ga)3Se5薄膜结构的Raman研究,半导体学报,25(11), 1423-1428(2004))
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!